1000 resultados para H-H COLLISIONS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reported are total, absolute charge-exchange cross sections for collisions of 3He(2+) ions with He and H-2. Measurements are reported at fixed energies between 0.33 and 4.67 keV/amu. Both the present results and earlier results of others are analyzed in terms of available experimental small-angle differential cross sections as a function of collision energy, and hence the geometry of the exit aperture of the gas-collision cells used by the various experimental groups. In addition, the effective length of gas-collision cells is studied using fluid dynamic and molecular flow simulations to address the density patterns near the cell entrance and exit apertures. When small acceptance-angle corrections were applied, the results of present and previous measurements for the single electron capture in these systems were brought into good accord in the relevant energy ranges. Taken in their entirety, the present data for 3He(2+) with He and H-2 lend themselves to new theoretical calculations of the multichannel charge-exchange cross sections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have carried out a 29-state R-matrix calculation in order to calculate collision strengths and effective collision strengths for the electron impact excitation of S III. The recently developed parallel RMATRX II suite of codes have been used, which perform the calculation in intermediate coupling. Collision strengths have been generated over an electron energy range of 0-12 Ryd, and effective collision strength data have been calculated from these at electron temperatures in the range 1000-100,000 K. Results are here presented for the fine-structure transitions between the ground-state configurations of 3s(2)3p(2) P-3(0,1,2), D-1(2), and S-1(0), and the values given resolve a discrepancy between two previous R-matrix calculations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent experimental advances in light technology necessitate the availability of sophisticated theoretical models which can incorporate an accurate treatment of double-electron continua. We describe here a new intermediate-energy R-matrix approach to photoionisation and photo-double-ionisation and illustrate its feasibilty by application to photoionisation and photo-double-ionisation of He, and photodetachment and photo-double-detachment of H-. Results are shown to be in excellent agreement with previous theoretical and experimental studies. This work is a key step in the development of a multipurpose R-matrix code for multiple-electron ejection. © 2012 American Physical Society

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the charge transfer between colliding ions, atoms, or molecules, within time-dependent density functional theory. Two particular cases are presented, the collision between a proton and a Helium atom, and between a gold atom and a butane molecule. In the first case, proton kinetic energies between 16 keV and 1.2 MeV are considered, with impact parameters between 0.31 and 1.9 angstrom. The partial transfer of charge is monitored with time. The total cross-section is obtained as a function of the proton kinetic energy. In the second case, we analyze one trajectory and discuss spin-dependent charge transfer between the different fragments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonlinear phenomena play an essential role in the sound production process of many musical instruments. A common source of these effects is object collision, the numerical simulation of which is known to give rise to stability
issues. This paper presents a method to construct numerical schemes that conserve the total energy in simulations of one-mass systems involving collisions, with no conditions imposed on any of the physical or numerical parameters.
This facilitates the adaptation of numerical models to experimental data, and allows a more free parameter adjustment in sound synthesis explorations. The energy preservedness of the proposed method is tested and demonstrated though several examples, including a bouncing ball and a non-linear oscillator, and implications regarding the wider applicability are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In [M. Herty, A. Klein, S. Moutari, V. Schleper, and G. Steinaur, IMA J. Appl. Math., 78(5), 1087–1108, 2013] and [M. Herty and V. Schleper, ZAMM J. Appl. Math. Mech., 91, 763–776, 2011], a macroscopic approach, derived from fluid-dynamics models, has been introduced to infer traffic conditions prone to road traffic collisions along highways’ sections. In these studies, the governing equations are coupled within an Eulerian framework, which assumes fixed interfaces between the models. A coupling in Lagrangian coordinates would enable us to get rid of this (not very realistic) assumption. In this paper, we investigate the well-posedness and the suitability of the coupling of the governing equations within the Lagrangian framework. Further, we illustrate some features of the proposed approach through some numerical simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have developed a model to predict the post-collision brightness increase of sub-catastrophic collisions between asteroids and to evaluate the likelihood of a survey detecting these events. It is based on the cratering scaling laws of Holsapple and Housen (2007) and models the ejecta expansion following an impact as occurring in discrete shells each with their own velocity. We estimate the magnitude change between a series of target/impactor pairs, as- suming it is given by the increase in reflecting surface area within a photometric aperture due to the resulting ejecta. As expected the photometric signal increases with impactor size, but we find also that the photometric signature decreases rapidly as the target aster- oid diameter increases, due to gravitational fallback. We have used the model results to make an estimate of the impactor diameter for the (596) Scheila collision of D = 49 − 65m depending on the impactor taxonomy, which is broadly consistent with previous estimates. We varied both the strength regime (highly porous and sand/cohesive soil) and the tax- onomic type (S-, C- and D-type) to examine the effect on the magnitude change, finding that it is significant at early stages but has only a small effect on the overall lifetime of the photometric signal. Combining the results of this model with the collision frequency estimates of Bottke et al. (2005), we find that low-cadence surveys of ∼one visit per luna- tion will be insensitive to impacts on asteroids with D < 20km if relying on photometric detections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We calculate and analyze Feshbach resonance spectra for ultracold Yb(1S0)+Yb(3P2) collisions as a function of an interatomic potential scaling factor λ and external magnetic field. We show that, at zero field, the resonances are distributed randomly in λ, but that signatures of quantum chaos emerge as a field is applied. The random zero-field distribution arises from superposition of structured spectra associated with individual total angular momenta. In addition, we show that the resonances with respect to magnetic field in the experimentally accessible range of 400 to 2000 G are chaotically distributed, with strong level repulsion that is characteristic of quantum chaos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ab initio electron scattering calculations using the R -matrix approach have been performed for within a three-state valence configuration-interaction model (VCI). The lowest three electronic target states ( , and the ) of this molecular nitrogen cation are included in the close-coupling method, with each state being represented by a valence CI approximation. From a detailed analysis of the resonance structure found in our work for the symmetries we find four prominent Rydberg series of the type , , , and a interloper resonance. This interloper molecular resonance associated with the B state of is seen to cause distortions of the resulting resonance spectra. A comparison of our total cross sections for the X - B transition shows excellent agreement with the available experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wireless sensor networks (WSNs) emerge as underlying infrastructures for new classes of large-scale networked embedded systems. However, WSNs system designers must fulfill the quality-of-service (QoS) requirements imposed by the applications (and users). Very harsh and dynamic physical environments and extremely limited energy/computing/memory/communication node resources are major obstacles for satisfying QoS metrics such as reliability, timeliness, and system lifetime. The limited communication range of WSN nodes, link asymmetry, and the characteristics of the physical environment lead to a major source of QoS degradation in WSNs-the ldquohidden node problem.rdquo In wireless contention-based medium access control (MAC) protocols, when two nodes that are not visible to each other transmit to a third node that is visible to the former, there will be a collision-called hidden-node or blind collision. This problem greatly impacts network throughput, energy-efficiency and message transfer delays, and the problem dramatically increases with the number of nodes. This paper proposes H-NAMe, a very simple yet extremely efficient hidden-node avoidance mechanism for WSNs. H-NAMe relies on a grouping strategy that splits each cluster of a WSN into disjoint groups of non-hidden nodes that scales to multiple clusters via a cluster grouping strategy that guarantees no interference between overlapping clusters. Importantly, H-NAMe is instantiated in IEEE 802.15.4/ZigBee, which currently are the most widespread communication technologies for WSNs, with only minor add-ons and ensuring backward compatibility with their protocols standards. H-NAMe was implemented and exhaustively tested using an experimental test-bed based on ldquooff-the-shelfrdquo technology, showing that it increases network throughput and transmission success probability up to twice the values obtained without H-NAMe. H-NAMe effectiveness was also demonstrated in a target tracking application with mobile robots - over a WSN deployment.