940 resultados para Guava tree
Resumo:
In the ornamental plant production region of Girona (Spain), which is one of the largest of its kind in southern Europe, most of the surface is irrigated using wide blocked-end furrows. The objectives of this paper were: (1) to evaluate the irrigation scheduling methods used by ornamental plant producers; (2) to analyse different scenarios in order to assess how they affect irrigation performance; (3) to evaluate the risk of deep percolation; and (4) to calculate gross water productivity. A two-year study in a representative commercial field, planted with Prunus cerasifera ‘Nigra’, was carried out. The irrigation dose applied by the farmers was slightly smaller than the required water dose estimated by the use of two different methods: the first based on soil water content, and the second based on evapotranspiration. Distribution uniformity and application eff iciency were high, with mean values above 87%. Soil water content measurements revealed that even at the end of the furrow, where the infiltrated water depth was greatest, more than 90% of the infiltrated water was retained in the shallowest 40 cm of the soil; accordingly, the risk of water loss due to deep percolation was minimal. Gross water productivity for ornamental tree production was € 11.70 m–3, approximately 20 times higher than that obtained with maize in the same region.
Resumo:
Compared to natural selection, domestication implies a dramatic change in traits linked to fitness. A number of traits conferring fitness in the wild might be detrimental under domestication, and domesticated species typically differ from their ancestors in a set of traits known as the domestication syndrome. Specifically, trade-offs between growth and reproduction are well established across the tree of life. According to allocation theory, selection for growth rate is expected to indirectly alter life-history reproductive traits, diverting resources from reproduction to growth. Here we tested this hypothesis by examining the genetic change and correlated responses of reproductive traits as a result of selection for timber yield in the tree Pinus pinaster. Phenotypic selection was carried out in a natural population, and progenies from selected trees were compared with those of control trees in a common garden experiment. According to expectations, we detected a genetic change in important life-history traits due to selection. Specifically, threshold sizes for reproduction were much higher and reproductive investment relative to size significantly lower in the selected progenies just after a single artificial selection event. Our study helps to define the domestication syndrome in exploited forest trees and shows that changes affecting developmental pathways are relevant in domestication processes of long-lived plants.
Resumo:
Spondias mombin L. is a fruit tree from the American continent from the Anacardiaceae family. In Brazil it is common in different vegetation types but is more frequent in the Atlantic and Amazonian rainforests. It is economically important because of its fruits, which are widely consumed raw or processed as fruit jellies, juices and ice creams. The leaves have great importance in the pharmaceutical industry because of their antibacterial properties. In the state of Pernambuco, cajá tree is widely distributed in the Zona da Mata region and less frequently in the Agreste and Sertão areas. In this work diversity and genetic structure were studied in four populations of cajá tree from Pernambuco's Zona da Mata, Northeast Brazil, using isozymes polymorphism analyses from electrophoreses. The result showed 100% of polymorphism (P) for nine alleles
and the average of alleles per locus s was 2.4. The expected heterozygosity
ranged from 0.530 to 0.574 and the observed heterozygosity
, from 0.572 to 0.735. It was not observed inbreeding and the average F IT was -0.175, whereas within population inbreeding (f) varied from -0.08 to- 0.37. The genetic divergence among the populations (F ST) ranged from 0.006 to 0.028 and the average was 0.026. The average of estimated gene flow (Nm) was high (5.27). The CG-IPA population, corresponding to the germplasm collection of IPA, showed more than 96% of genetic similarity with other populations; therefore, it is a good representative of the existent genetic diversity in the Zona da Mata region.
Resumo:
Brazil is a very large country with a diverse climate. This fact allows a diversity of plants to grow ranging from tropical rainforest in the Amazon, passing through Atlantic Forest along the coast, the cerrados (Brazilian savannah) in the Central West region, and semi-arid area in the Northeast. Latitude ranges from 5º N to 33º S, with most of this territory in the tropical region. There are enough reasons to plant breeders devoting great amount of their effort to improve plants suitable for warm climates, though. Among fruit crops, results of breeder's work have been noticed in several species, especially on peaches, grapes, citrus, apples, persimmons, figs, pears and others not so common, such as acerola, guava, annonas (sour sop, sugar apple, atemoya, cherimoya) and passion fruit. Peach tree introduced at low latitude (22 ± 2ºS) requires climatic adaptation to subtropical conditions of low chilling. In Brazil, the first peach breeding program aiming adaptation of cultivars to different habitats was developed by Instituto Agronômico de Campinas (IAC) beginning in the end of the 40's. Apple low chill requirement cultivars obtained in a South state, Paraná, are now been planted at low latitudes. Banana and pineapple breeding programs from Embrapa units along the country are successfully facing new sanitary problems. Petrolina/Juazeiro, in the Northeastern region (9ºS), is the main grape exporting region with more than 6,000 ha. Grape growing in the region is based in the so called "tropical" rootstocks released by IAC, namely: IAC 313 'Tropical', IAC 572 'Jales'. Recently, Embrapa Grape and Wine released tropical grape seedless cultivars that are changing table grape scenario in the country.
Resumo:
Despite the importance of peach (Prunus persica (L.) Batsch) in Rio Grande do Sul, little is known about mites fluctuation population considered important to this crop. The objective of this study was to know the population diversity and fluctuation of mite species associated with Premier and Eldorado varieties in Roca Sales and Venâncio Aires counties, Rio Grande do Sul. The study was conducted from July 2008 to June 2009 when 15 plants were randomly chosen in each area. The plants were divided in quadrants and from each one a branch was chosen from which three leaves were removed: one collected in the apical region, another in the medium and the other in the basal region, totalizing 180 leaves/area. Five of the most abundant associated plants were collected monthly in enough amounts for the screening under the stereoscopic microscope during an hour. A total of 1,124 mites were found belonging to 14 families and 28 species. Tetranychus ludeni Zacher, 1913, Panonychus ulmi (Koch, 1836) and Mononychellus planki (McGregor, 1950) were the most abundant phytophagous mites, whereas Typhlodromalus aripo Deleon, 1967 and Phytoseiulus macropilis (Banks, 1904) the most common predatory mites. The period of one hour under stereoscopic microscope was enough to get a representative sample. In both places evaluated the ecologic indices were low, but little higherin Premier (H' 0.56; EqJ: 0.43) when compared to Eldorado (H' 0.53; EqJ 0.40). In Premier constant species were not observed and accessory only Brevipalpus phoenicis (Geijskes, 1939), T. ludeni and T. aripo. Higher abundance was observed in December and January and bigger amount in April. Already in Eldorado, T. ludeni and P. ulmi were constants. Greater abundance was observed in November and December, whereas grater richness in December and January. In both orchards were not found mites in buds. Tetranychus ludeni is the most abundant phytophagous mites with outbreak population in November, December and January and high predator diversity was observed on associated plants and on peach plants, indicating the existence of species mobility in peach orchard.
Resumo:
The purpose of this study was to characterize cultivated genotypes of three jabuticaba species (Plinia cauliflora, P. trunciflora, and P. jaboticaba). Phenology and fruit growth, as well as leaf, flower and fruit traits were evaluated. Variability in all traits was observed among genotypes of the three jabuticaba species. The trait peduncle size is indicated for differentiation of the three species under study. The leaf and fruit sizes of the genotypes P. trunciflora 3, P. trunciflora 4, P. trunciflora 5 and P. jaboticaba 1 differ from those described in the literature for these species, indicating the formation of ecotypes. Jabuticaba fruit skin contains high anthocyanin and flavonoid concentrations, with potential use in food and pharmaceutical industries.
Resumo:
The role of competition for light among plants has long been recognized at local scales, but its potential importance for plant species' distribution at larger spatial scales has largely been ignored. Tree cover acts as a modulator of local abiotic conditions, notably by reducing light availability below the canopy and thus the performance of species that are not adapted to low-light conditions. However, this local effect may propagate to coarser spatial grains. Using 6,935 vegetation plots located across the European Alps, we fit Generalized Linear Models (GLM) for the distribution of 960 herbs and shrubs species to assess the effect of tree cover at both plot and landscape grain sizes (~ 10-m and 1-km, respectively). We ran four models with different combinations of variables (climate, soil and tree cover) for each species at both spatial grains. We used partial regressions to evaluate the independent effects of plot- and landscape-scale tree cover on plant communities. Finally, the effects on species' elevational range limits were assessed by simulating a removal experiment comparing the species' distribution under high and low tree cover. Accounting for tree cover improved model performance, with shade-tolerant species increasing their probability of presence at high tree cover whereas shade-intolerant species showed the opposite pattern. The tree cover effect occurred consistently at both plot and landscape spatial grains, albeit strongest at the former. Importantly, tree cover at the two grain sizes had partially independent effects on plot-scale plant communities, suggesting that the effects may be transmitted to coarser grains through meta-community dynamics. At high tree cover, shade-intolerant species exhibited elevational range contractions, especially at their upper limit, whereas shade-tolerant species showed elevational range expansions at both limits. Our findings suggest that the range shifts for herb and shrub species may be modulated by tree cover dynamics.
Resumo:
It was evaluated the genetic divergence in peach genotypes for brown rot reaction. It was evaluated 26 and 29 peach genotypes in the 2009/2010 and 2010/2011 production cycle, respectively. The experiment was carried out at the Laboratório de Fitossanidade, da UTFPR - Campus Dois Vizinhos. The experimental design was entirely randomized, considering each peach genotype a treatment, and it was use three replication of nine fruits. The treatment control use three replication of three peach. The fruit epidermis were inoculated individually with 0.15 mL of M. fructicola conidial suspension (1.0 x 10(5) spores mL-1). In the control treatment was sprayed with 0.15 mL of distilled water. The fruits were examined 72 and 120 hours after inoculation, and the incidence and severity disease were evaluated. These results allowed realized study for genetic divergence, used as dissimilarity measure the Generalized Mahalanobis distance. Cluster analysis using Tocher´s optimization method and distances in the plan were applied. There was smallest genetic divergence among peach trees evaluated for brown rot, what can difficult to obtain resistance in the genotypes.
Resumo:
Rooting and acclimatization are limiting steps in plant micropropagation, especially in woody plant species. This study aimed to evaluate the IAA and IBA effect on the in vitro rooting and acclimatization of micropropagated shoots of Japanese plum (Prunus salicina Lindl.) cv. América. Shoots from 3 to 4 cm long were inoculated in MS medium with half salt and vitamin concentrations (MS/2) added with IAA and IBA (0, 0.25, 0.5, 0.75 and 1 mg L-1). After a 20-day period in in vitro cultivation, the shoots were evaluated, and then transferred to a greenhouse, and evaluated after 30 days. At the end of the in vitro cultivation period, no significant interactions were observed for number of roots per shoot and rooting percentage, but a significant effect was recorded for auxin type only, for which shoots grown in media added with IBA showed high values - 0.87 and 41.95%, respectively. A linear increase response from 1.45 to 5.75 cm was verified for root length of shoots cultivated in IBA medium; however, no significant effect was observed, and a 0.86 cm average root length per shoot grown in medium added with IAA was found. After 30 days of acclimatization period, the largest survival percentage was obtained from shoots cultivated in medium with 1 mg L-1 of IBA and IAA (88% and 92%, respectively). Although, IBA provided the highest in vitro rooting, most of the surviving shoots were those originated in IAA-added medium, probably because IBA promoted longer fibrous roots, less appropriate for transplant and soil fixation, as they are easily damaged. It was concluded that in vitro rooting with the addition of the highest IAA concentration (1 mg L-1) provided the greatest plant survival during the acclimatization period of the Japanese plum cv. América.
Resumo:
Guava response to liming and fertilization can be monitored by tissue testing. Tissue nutrient signature is often diagnosed against nutrient concentration standards. However, this approach has been criticized for not considering nutrient interactions and to generate numerical biases as a result of data redundancy, scale dependency and non-normal distribution. Techniques of compositional data analysis can control those biases by balancing groups of nutrients, such as those involved in liming and fertilization. The sequentially arranged and orthonormal isometric log ratios (ilr) or balances avoid numerical bias inherent to compositional data. The objectives were to relate tissue nutrient balances with the production of "Paluma" guava orchards differentially limed and fertilized, and to adjust the current patterns of nutrient balance with the range of more productive guava trees. It was conducted one experiment of 7-yr of liming and three experiments of 3-yr with N, P and K trials in 'Paluma' orchards on an Oxisol. Plant N, P, K, Ca and Mg were monitored yearly. It was selected the [N, P, K | Ca, Mg], [N, P | K], [N | P] and [Ca | Mg] balances to set apart the effects of liming (Ca-Mg) and fertilizers (N-K) on macronutrient balances. Liming largely influenced nutrient balances of guava in the Oxisol while fertilization was less influential. The large range of guava yields and nutrient balances allowed defining balance ranges and comparing them with the critical ranges of nutrient concentration values currently used in Brazil and combined into ilr coordinates.
Resumo:
The current high competition on Citrus industry demands from growers new management technologies for superior efficiency and sustainability. In this context, precision agriculture (PA) has developed techniques based on yield mapping and management systems that recognize field spatial variability, which contribute to increase profitability of commercial crops. Because spatial variability is often not perceived the orange orchards are still managed as uniform and adoption of PA technology on citrus farms is low. Thus, the objective of the present study was to characterize the spatial variability of three factors: fruit yield, soil fertility and occurrence of plant gaps caused by either citrus blight or huanglongbing (HLB) in a commercial Valencia orchard in Brotas, São Paulo State, Brazil. Data from volume, geographic coordinates and representative area of the bags used on harvest were recorded to generate yield points that were then interpolated to produce the yield map. Soil chemical characteristics were studied by analyzing samples collected along planting rows and inter-rows in 24 points distributed in the field. A map of density of tree gaps was produced by georeferencing individual gaps and later by counting the number of gaps within 500 m² cells. Data were submitted to statistical and geostatistical analyses. A t test was used to compare means of soil chemical characteristics between sampling regions. High variation on yield and density of tree gaps was observed from the maps. It was also demonstrated overlapping regions of high density of plant absence and low fruit yield. Soil fertility varied depending on the sampling region in the orchard. The spatial variability found on yield, soil fertility and on disease occurrence demonstrated the importance to adopt site specific nutrient management and disease control as tools to guarantee efficiency of fruit production.
Resumo:
Anthracnose, caused by Colletotrichum gloeosporioides, produces brown lesions on guava fruits, causing severe losses on postharvest. In this study, the infection and colonization of guava fruits by C. gloeosporioides has been examined using scanning and transmission electron microscopy. Fruits at the physiologically mature stage were inoculated with a 10(5) conidia/mL spore suspension. Afterward, fruits were incubated at 25 °C in a wet chamber for periods of 6, 12, 24, 48, 96 and 120 h to allow examination of the infection and colonization process. Conidia germination and appressoria formation occurred six hours after inoculation (h.a.i). Penetration occurred directly via penetration pegs from appressoria, which penetrated the host cuticle 48 h.a.i. Notably, the appressoria did not produce an appressorial cone surrounding the penetration pore. Infection vesicles were found in epidermal cells 96 h.a.i. The same fungal structures were found in epidermal and parenchymal cells of the host 120 h.a.i. Colonization strategy of C. gloeosporioides on guava fruit was intracellular hemibiotrophic.
Resumo:
BACKGROUND: Hybridization between incipient species is expected to become progressively limited as their genetic divergence increases and reproductive isolation proceeds. Amphibian radiations and their secondary contact zones are useful models to infer the timeframes of speciation, but empirical data from natural systems remains extremely scarce. Here we follow this approach in the European radiation of tree frogs (Hyla arborea group). We investigated a natural hybrid zone between two lineages (Hyla arborea and Hyla orientalis) of Mio-Pliocene divergence (~5 My) for comparison with other hybrid systems from this group. RESULTS: We found concordant geographic distributions of nuclear and mitochondrial gene pools, and replicated narrow transitions (~30 km) across two independent transects, indicating an advanced state of reproductive isolation and potential local barriers to dispersal. This result parallels the situation between H. arborea and H. intermedia, which share the same amount of divergence with H. orientalis. In contrast, younger lineages show much stronger admixture at secondary contacts. CONCLUSIONS: Our findings corroborate the negative relationship between hybridizability and divergence time in European tree frogs, where 5 My are necessary to achieve almost complete reproductive isolation. Speciation seems to progress homogeneously in this radiation, and might thus be driven by gradual genome-wide changes rather than single speciation genes. However, the timescale differs greatly from that of other well-studied amphibians. General assumptions on the time necessary for speciation based on evidence from unrelated taxa may thus be unreliable. In contrast, comparative hybrid zone analyses within single radiations such as our case study are useful to appreciate the advance of speciation in space and time.
Resumo:
Quest for Orthologs (QfO) is a community effort with the goal to improve and benchmark orthology predictions. As quality assessment assumes prior knowledge on species phylogenies, we investigated the congruency between existing species trees by comparing the relationships of 147 QfO reference organisms from six Tree of Life (ToL)/species tree projects: The National Center for Biotechnology Information (NCBI) taxonomy, Opentree of Life, the sequenced species/species ToL, the 16S ribosomal RNA (rRNA) database, and trees published by Ciccarelli et al. (Ciccarelli FD, et al. 2006. Toward automatic reconstruction of a highly resolved tree of life. Science 311:1283-1287) and by Huerta-Cepas et al. (Huerta-Cepas J, Marcet-Houben M, Gabaldon T. 2014. A nested phylogenetic reconstruction approach provides scalable resolution in the eukaryotic Tree Of Life. PeerJ PrePrints 2:223) Our study reveals that each species tree suggests a different phylogeny: 87 of the 146 (60%) possible splits of a dichotomous and rooted tree are congruent, while all other splits are incongruent in at least one of the species trees. Topological differences are observed not only at deep speciation events, but also within younger clades, such as Hominidae, Rodentia, Laurasiatheria, or rosids. The evolutionary relationships of 27 archaea and bacteria are highly inconsistent. By assessing 458,108 gene trees from 65 genomes, we show that consistent species topologies are more often supported by gene phylogenies than contradicting ones. The largest concordant species tree includes 77 of the QfO reference organisms at the most. Results are summarized in the form of a consensus ToL (http://swisstree.vital-it.ch/species_tree) that can serve different benchmarking purposes.
Resumo:
A seasonal period of water deficit characterizes tropical dry forests (TDFs). There, sympatric tree species exhibit a diversity of growth rates, functional traits, and responses to drought, suggesting that each species may possess different strategies to grow under different conditions of water availability. The evaluation of the long-term growth responses to changes in the soil water balance should provide an understanding of how and when coexisting tree species respond to water deficit in TDFs. Furthermore, such differential growth responses may be linked to functional traits related to water storage and conductance. We used dendrochronology and climate data to retrospectively assess how the radial growth of seven coexisting deciduous tree species responded to the seasonal soil water balance in a Bolivian TDF. Linear mixed-effects models were used to quantify the relationships between basal area increment and seasonal water balance. We related these relationships with wood density and sapwood production to assess if they affect the growth responses to climate. The growth of all species responded positively to water balance during the wet season, but such responses differed among species as a function of their wood density. For instance, species with a strong growth response to water availability averaged a low wood density which may facilitate the storage of water in the stem. By contrast, species with very dense wood were those whose growth was less sensitive to water availability. Coexisting tree species thus show differential growth responses to changes in soil water balance during the wet season. Our findings also provide a link between wood density, a trait related to the ability of trees to store water in the stem, and wood formation in response to water availability.