986 resultados para Green production


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates factors affecting anaerobic degradation of marine macro-algae (or seaweed), when used as a co-substrate with terrestrial plant biomass for the production of biogas. Using Laminaria digitata, a brown marine seaweed species and green peas, results showed that when only 2% of feedstock of a reactor treating the green peas at an organic loading rate (OLR) of 2.67 kg VS.m3.day-1 was replaced with the seaweed, methane production was disrupted, whilst acidogenesis, seemed to be less adversely affected, resulting in excessive volatile acids accumulation. Reactor stability was difficult to achieve thereafter. The experiment was repeated with a lower initial OLR of green peas of 0.70 kg VS.m3.day-1 before the addition of the seaweed. Although similar symptoms as in first trial were observed, process stability was restored through the control of OLR and alkalinity. These measures led to an increase in overall OLR of 1.25 kg VS.m3.day-1 comprising of 35% seaweed. This study has shown that certain seaweed constituents are more inhibitory to the methanogens even at trace concentrations than to the other anaerobic digestion microbial groups. Appropriate adaptation strategy, involving initial low proportion of the seaweed relative to the total OLR, and overall low OLR, is necessary to ensure effective adaptation of the microorganisms to the inhibitory constituents of seaweed. Where there is seasonal availability of seaweed, the results of this study suggest that a fresh adaptation or start-up strategy must be implemented during each cycle of seaweed availability in order to ensure sustainable process stability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coral reefs worldwide are affected by increasing dissolved inorganic carbon (DIC) and organic carbon (DOC) concentrations due to ocean acidification (OA) and coastal eutrophication. These two stressors can occur simultaneously, particularly in near-shore reef environments with increasing anthropogenic pressure. However, experimental studies on how elevated DIC and DOC interact are scarce and fundamental to understanding potential synergistic effects and foreseeing future changes in coral reef function. Using an open mesocosm experiment, the present study investigated the impact of elevated DIC (pHNBS: 8.2 and 7.8; pCO2: 377 and 1076 μatm) and DOC (added as 833 μmol L-1 of glucose) on calcification and photosynthesis rates of two common calcifying green algae, Halimeda incrassata and Udotea flabellum, in a shallow reef environment. Our results revealed that under elevated DIC, algal photosynthesis decreased similarly for both species, but calcification was more affected in H. incrassata, which also showed carbonate dissolution rates. Elevated DOC reduced photosynthesis and calcification rates in H. incrassata, while in U. flabellum photosynthesis was unaffected and thalus calcification was severely impaired. The combined treatment showed an antagonistic effect of elevated DIC and DOC on the photosynthesis and calcification rates of H. incrassata, and an additive effect in U. flabellum. We conclude that the dominant sand dweller H. incrassata is more negatively affected by both DIC and DOC enrichments, but that their impact could be mitigated when they occur simultaneously. In contrast, U. flabellum can be less affected in coastal eutrophic waters by elevated DIC, but its contribution to reef carbonate sediment production could be further reduced. Accordingly, while the capacity of environmental eutrophication to exacerbate the impact of OA on algal-derived carbonate sand production seems to be species-specific, significant reductions can be expected under future OA scenarios, with important consequences for beach erosion and coastal sediment dynamics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Green bean production accounts for 2.4% of the total value of Australian vegetable production and was Australia's tenth largest vegetable crop in 2008-2009 by value. Australian green bean production is concentrated in Queensland (51%) and Tasmania (34%) where lost productivity as a direct result of insect damage is recognised as a key threat to the industry (AUSVEG, 2011). Green beans attract a wide range of insect pests, with thrips causing the most damage to the harvestable product, the pod. Thrips populations were monitored in green bean crops in the Gatton Research Facility, Lockyer Valley, South-east Queensland, Australia from 2002-2011. Field trials were conducted to identify the thrips species present, to record fluctuation in abundance during the season and assess pod damage as a direct result of thrips. Thirteen species of thrips were recorded during this time on bean plantings, with six dominant species being collected during most of the growing season: Frankliniella occidentalis, F. schultzei, Megalurothrips usitatus, Pseudanaphothrips achaetus, Thrips imaginis and T. tabaci. Thrips numbers ranged from less than one thrips per flower to as high as 5.39 thrips per flower. The highest incidence of thrips presence found in October/November 2008, resulted in 10.74% unmarketable pods due to thrips damage, while the lowest number of thrips recorded in April 2008 caused a productivity loss of 36.65% of pods as a result of thrips damage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocean acidification poses a serious threat to a broad suite of calcifying organisms. Scleractinian corals and cal- careous algae that occupy shallow, tropical waters are vulnerable to global changes in ocean chemistry be- cause they already are subject to stressful and variable carbon dynamics at the local scale. For example, net heterotrophy increases carbon dioxide concentrations, and pH varies with diurnal fluctuations in photosyn- thesis and respiration. Few researchers, however, have investigated the possibility that carbon dioxide con- sumption during photosynthesis by non-calcifying photoautotrophs, such as seagrasses, can ameliorate deleterious effects of ocean acidi fi cation on sympatric calcareous algae. Naturally occurring variations in the density of seagrasses and associated calcareous algae provide an ecologically relevant test of the hypoth- esis that diel fl uctuations in water chemistry driven by cycles of photosynthesis and respiration within seagrass beds create microenvironments that enhance macroalgal calci fi cation. In Grape Tree Bay off Little Cayman Island BWI, we quanti fi ed net production and characterized calci fi cation for thalli of the calcareous green alga Halimeda incrassata growing within beds of Thalassia testudinum with varying shoot densities. Re- sults indicated that individual H . incrassata thalli were ~6% more calci fi ed in dense seagrass beds. On an areal basis, however, far more calcium carbonate was produced by H . incrassata in areas where seagrasses were less dense due to higher rates of production. In addition, diel pH regimes in vegetated and unvegetated areas within the lagoon were not signi fi cantly different, suggesting a high degree of water exchange and mixing throughout the lagoon. These results suggest that, especially in well-mixed lagoons, carbonate pro- duction by calcareous algae may be more related to biotic interactions between seagrasses and calcareous algae than to seagrass-mediated changes in local water chemistry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Effect of environmental factors on the growth of the Chlorella vulgaris was studied. C. vulgaris was cultivated in sterilized natural seawater enriched with F/2-Si medium. Then grow in bucket, tub and photobioreactor (PBR) in outdoor condition. The daily routine work consisted of culture checkups of optical density, biomass gains, atmosphere lux, culture lux, atmosphere temperature and culture temperature were recorded. The highest biomass yields were (3.0 μg/ml-1) in December and (2.01 μg/ml-1) in November in PBR. The highest deviation was in atmosphere lux in time 8:30 (± 117.7) and lowest deviation was in atmosphere temperature in time 15:00 (± 1.0499). Optical density (OD) indicated that the best growth of C. vulgaris in outdoor condition was obtained in 650 lux and also it increased with increasing amount of lux. Tub report of C. vulgaris showed different growing behaviors at the various concentration of light and at the different temperatures. Algal production in outdoor PBR is relatively inexpensive, but is only suitable for a few, fast-growing specie. Finally, this fact is noteworthy that in outdoor conditions, temperature and light have important role in growth of C. vulgaris in present study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of green manures (GMs) in combination with nitrogen (N) fertilizer application is a promising practice to improve N fertilizer management in agricultural production systems. The main objective of this study was to evaluate the N use efficiency (NUE) of rice plant, derived from GMs including sunn hemp (Crotalaria juncea L.), millet (Pennisetum glaucum L.) and urea in the greenhouse. The experimental treatments included two GMs (sunn hemp-15N and millet-15N), absence of N organic source (without GM residues in soil) and four N rates, as urea-15N (0, 28.6, 57.2 and 85.8 mg N kg-1). The results showed that both rice grain and straw biomass yields under sunn hemp were greater than that of millet or without the application of GM. The NUE of rice under sunn hemp was greater than that under millet (18.9 and 7.8% under sunn hemp and millet, respectively). The urea N application rates did not affect the fertilizer NUE by rice (53.7%) with or without GMs. The NUE of GMs by rice plants ranged from 14.1% and 16.8% for root and shoot, respectively. The study showed that green manures can play an important role in enhancing soil fertility and N supply to subsequent crops.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is no doubt that sufficient energy supply is indispensable for the fulfillment of our fossil fuel crises in a stainable fashion. There have been many attempts in deriving biodiesel fuel from different bioenergy crops including corn, canola, soybean, palm, sugar cane and vegetable oil. However, there are some significant challenges, including depleting feedstock supplies, land use change impacts and food use competition, which lead to high prices and inability to completely displace fossil fuel [1-2]. In recent years, use of microalgae as an alternative biodiesel feedstock has gained renewed interest as these fuels are becoming increasingly economically viable, renewable, and carbon-neutral energy sources. One reason for this renewed interest derives from its promising growth giving it the ability to meet global transport fuel demand constraints with fewer energy supplies without compromising the global food supply. In this study, Chlorella protothecoides microalgae were cultivated under different conditions to produce high-yield biomass with high lipid content which would be converted into biodiesel fuel in tandem with the mitigation of high carbon dioxide concentration. The effects of CO2 using atmospheric and 15% CO2 concentration and light intensity of 35 and 140 µmol m-2s-1 on the microalgae growth and lipid induction were studied. The approach used was to culture microalgal Chlorella protothecoides with inoculation of 1×105 cells/ml in a 250-ml Erlenmeyer flask, irradiated with cool white fluorescent light at ambient temperature. Using these conditions we were able to determine the most suitable operating conditions for cultivating the green microalgae to produce high biomass and lipids. Nile red dye was used as a hydrophobic fluorescent probe to detect the induced intracellular lipids. Also, gas chromatograph mass spectroscopy was used to determine the CO2 concentrations in each culture flask using the closed continuous loop system. The goal was to study how the 15% CO2 concentration was being used up by the microalgae during cultivation. The results show that the condition of high light intensity of 140 µmol m-2s-1 with 15% CO2 concentration obtain high cell concentration of 7 x 105 cells mL-1 after culturing Chlorella protothecoides for 9 to 10 day in both open and closed systems respectively. Higher lipid content was estimated as indicated by fluorescence intensity with 1.3 to 2.5 times CO2 reduction emitted by power plants. The particle size of Chlorella protothecoides increased as well due to induction of lipid accumulation by the cells when culture under these condition (140 µmol m-2s-1 with 15% CO2 concentration).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accurate assessment of standing pasture biomass in livestock production systems is a major factor for improving feed planning. Several tools are available to achieve this, including the GrassMaster II capacitance meter. This tool relies on an electrical signal, which is modified by the surrounding pasture. There is limited knowledge on how this capacitance meter performs in Mediterranean pastures. Therefore, we evaluated the GrassMaster II under Mediterranean conditions to determine (i) the effect of pasture moisture content (PMC) on the meter’s ability to estimate pasture green matter (GM) and dry matter (DM) yields, and (ii) the spatial variability and temporal stability of corrected meter readings (CMR) and DM in a bio-diverse pasture. Field tests were carried out with typical pastures of the southern region of Portugal (grasses, legumes, mixture and volunteer annual species) and at different phenological stages (and different PMC). There were significant positive linear relations between CMR and GM (r2 = 0.60, P < 0.01) and CMR and DM (r2 = 0.35, P < 0.05) for all locations (n = 347). Weak relationships were found for PMC (%) v. slope and coefficient of determination for both GM and DM. A significant linear relation existed for CMR v. GM and DM for PMC >80% (r2= 0.57, P < 0.01, RMSE = 2856.7 kg ha–1, CVRMSE=17.1% to GM; and r2= 0.51, P < 0.01,RMSE = 353.7 kg ha–1, CVRMSE = 14.3% to DM). Therefore, under the conditions of this current study there exists an optimum PMC (%) for estimating both GM and DM with the GrassMaster II. Repeated-measurements taken at the same location on different dates and conditions in a bio-diverse pasture showed similar and stable patterns between CMR and DM (r2= 0.67, P < 0.01, RMSE = 136.1 kg ha–1, CVRMSE = 6.5%). The results indicate that the GrassMaster II in-situ technique could play a crucial role in assessing pasture mass to improve feed planning under Mediterranean conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Considering the influence of herbicides in the metabolism of the carotenoids in corn, the objective of the present study was to evaluate the effect of herbicides and genotype on carotenoids concentration. The green corn hybrids BRS 1030 and P30F53 were subjected to a post-emergent herbicides application at 20 and 30 days after emergence. Carotenoids were extracted from corn grains and analyzed to quantify ?- and ?-carotene, lutein, zeaxanthin, ?-cryptoxanthin, total carotenoids (TC), and total of vitamin A carotenoids precursors (proVA). The application of foramsulfuron + iodosulfuron-methyl-sodium (40 + 2.6 g ha-1), nicosulfuron (20 g ha-1), mesotrione (120 g ha-1) and tembotrione (80 g ha-1 and 100 g ha-1) promoted higher concentration of carotenoids in fresh green corn. Lutein, zeaxanthin, ?-cryptoxanthin, ?-carotene, ?-carotene, proVA carotenoids, and TC concentration increased after foramsulfuron + iodosulfuron-methyl-sodium in late application (V5 to V6), nicosulfuron in both applications, mesotrione applied post-initial (V3 to V4), tembotrione (100 g ha-1) in both applications and tembotrione (80 g ha-1) in late post-application, at least for one hybrid. The content of carotenoids in the green corn kernels differed between ?BRS 1030? and ?P30F53?. Our results suggest a possibility of significant increase of carotenoids in green corn kernels through the handling of corn production with post-emergent herbicides.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La gestione del fine vita dei prodotti è un argomento di interesse attuale per le aziende; sempre più spesso l’imprese non possono più esimersi dall’implementare un efficiente sistema di Reverse Logistics. Per rispondere efficacemente a queste nuove esigenze diventa fondamentale ampliare i tradizionali sistemi logistici verso tutte quelle attività svolte all’interno della Reverse Logitics. Una gestione efficace ed efficiente dell’intera supply chain è un aspetto di primaria importanza per un’azienda ed incide notevolmente sulla sua competitività; proprio per perseguire questo obiettivo, sempre più aziende promuovono politiche di gestione delle supply chain sia Lean che Green. L’obiettivo di questo lavoro, nato dalle esigenze descritte sopra, è quello di applicare un modello innovativo che consideri sia politiche di gestione Lean, che dualmente politiche Green, alla gestione di una supply chain del settore automotive, comprendente anche le attività di gestione dei veicoli fuori uso (ELV). Si è analizzato per prima cosa i principi base e gli strumenti utilizzati per l’applicazione della Lean Production e del Green supply chain management e in seguito si è analizzato le caratteristiche distintive della Reverse Logistics e in particolare delle reti che trattano i veicoli a fine vita. L’obiettivo finale dello studio è quello di elaborare e implementare, tramite l’utilizzo del software AMPL, un modello di ottimizzazione multi-obiettivo (MOP- Multi Objective Optimization) Lean e Green a una Reverse Supply Chain dei veicoli a fine vita. I risultati ottenuti evidenziano che è possibile raggiungere un ottimo compromesso tra le due logiche. E' stata effettuata anche una valutazione economica dei risultati ottenuti, che ha evidenziato come il trade-off scelto rappresenti anche uno degli scenari con minor costi.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Against a backdrop of rapidly increasing worldwide population and growing energy demand, the development of renewable energy technologies has become of primary importance in the effort to reduce greenhouse gas emissions. However, it is often technically and economically infeasible to transport discontinuous renewable electricity for long distances to the shore. Another shortcoming of non-programmable renewable power is its integration into the onshore grid without affecting the dispatching process. On the other hand, the offshore oil & gas industry is striving to reduce overall carbon footprint from onsite power generators and limiting large expenses associated to carrying electricity from remote offshore facilities. Furthermore, the increased complexity and expansion towards challenging areas of offshore hydrocarbons operations call for higher attention to safety and environmental protection issues from major accident hazards. Innovative hybrid energy systems, as Power-to-Gas (P2G), Power-to-Liquid (P2L) and Gas-to-Power (G2P) options, implemented at offshore locations, would offer the opportunity to overcome challenges of both renewable and oil & gas sectors. This study aims at the development of systematic methodologies based on proper sustainability and safety performance indicators supporting the choice of P2G, P2L and G2P hybrid energy options for offshore green projects in early design phases. An in-depth analysis of the different offshore hybrid strategies was performed. The literature reviews on existing methods proposing metrics to assess sustainability of hybrid energy systems, inherent safety of process routes in conceptual design stage and environmental protection of installations from oil and chemical accidental spills were carried out. To fill the gaps, a suite of specific decision-making methodologies was developed, based on representative multi-criteria indicators addressing technical, economic, environmental and societal aspects of alternative options. A set of five case-studies was defined, covering different offshore scenarios of concern, to provide an assessment of the effectiveness and value of the developed tools.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cleaning is one of the most important and delicate procedures that are part of the restoration process. When developing new systems, it is fundamental to consider its selectivity towards the layer to-be-removed, non-invasiveness towards the one to-be-preserved, its sustainability and non-toxicity. Besides assessing its efficacy, it is important to understand its mechanism by analytical protocols that strike a balance between cost, practicality, and reliable interpretation of results. In this thesis, the development of cleaning systems based on the coupling of electrospun fabrics (ES) and greener organic solvents is proposed. Electrospinning is a versatile technique that allows the production of micro/nanostructured non-woven mats, which have already been used as absorbents in various scientific fields, but to date, not in the restoration field. The systems produced proved to be effective for the removal of dammar varnish from paintings, where the ES not only act as solvent-binding agents but also as adsorbents towards the partially solubilised varnish due to capillary rise, thus enabling a one-step procedure. They have also been successfully applied for the removal of spray varnish from marble substrates and wall paintings. Due to the materials' complexity, the procedure had to be adapted case-by-case and mechanical action was still necessary. According to the spinning solution, three types of ES mats have been produced: polyamide 6,6, pullulan and pullulan with melanin nanoparticles. The latter, under irradiation, allows for a localised temperature increase accelerating and facilitating the removal of less soluble layers (e.g. reticulated alkyd-based paints). All the systems produced, and the mock-ups used were extensively characterised using multi-analytical protocols. Finally, a monitoring protocol and image treatment based on photoluminescence macro-imaging is proposed. This set-up allowed the study of the removal mechanism of dammar varnish and semi-quantify its residues. These initial results form the basis for optimising the acquisition set-up and data processing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increasing environmental awareness has been a significant driving force for innovations and process improvements in different sectors and the field of chemistry is not an outlier. Innovating around industrial chemical processes in line with current environmental responsibilities is however no mean feat. One of such hard to overhaul process is the production of methyl methacrylate (MMA) commonly produced via the acetone cyanohydrin (ACH) process developed back in the 1930s. Different alternatives to the ACH process have emerged over the years and the Alpha Lucite process has been particularly promising with a combined plant capacity of 370,000 metric tonnes in Singapore and Saudi Arabia. This study applied Life Cycle Assessment methodology to conduct a comparative analysis between the ACH and Lucite processes with the aim of ascertaining the effect of applying principles of green chemistry as a process improvement tool on overall environmental impacts. A further comparison was made between the Lucite process and a lab-scale process that is further improvement on the former, also based on green chemistry principles. Results showed that the Lucite process has higher impacts on resource scarcity and ecosystem health whereas the ACH process has higher impacts on human health. On the other hand, compared to the Lucite process the lab-scale process has higher impacts in both the ecosystem and human health categories with lower impacts only in the resource scarcity category. It was observed that the benefits of process improvements with green chemistry principles might not be apparent in some categories due to some limitations of the methodology. Process contribution analysis was also performed and it revealed that the contribution of energy is significant, therefore a sensitivity analysis with different energy scenarios was performed. An uncertainty analysis using Monte Carlo analysis was also performed to validate the consistency of the results in each of the comparisons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phospholipases A2 (PLA2) are key enzymes for production of lipid mediators. We previously demonstrated that a snake venom sPLA2 named MT-III leads to prostaglandin (PG)E2 biosynthesis in macrophages by inducing the expression of cyclooxygenase-2 (COX-2). Herein, we explored the molecular mechanisms and signaling pathways leading to these MT-III-induced effects. Results demonstrated that MT-III induced activation of the transcription factor NF-κB in isolated macrophages. By using NF-κB selective inhibitors, the involvement of this factor in MT-III-induced COX-2 expression and PGE2 production was demonstrated. Moreover, MT-III-induced COX-2 protein expression and PGE2 release were attenuated by pretreatment of macrophages with SB202190, and Ly294002, and H-7-dihydro compounds, indicating the involvement of p38MAPK, PI3K, and PKC pathways, respectively. Consistent with this, MT-III triggered early phosphorylation of p38MAPK, PI3K, and PKC. Furthermore, SB202190, H-7-dihydro, but not Ly294002 treatment, abrogated activation of NF-κB induced by MT-III. Altogether, these results show for the first time that the induction of COX-2 protein expression and PGE2 release, which occur via NF-κB activation induced by the sPLA2-MT-III in macrophages, are modulated by p38MAPK and PKC, but not by PI3K signaling proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rhodotorula glutinis CCT 2182, Rhodosporidium toruloides CCT 0783, Rhodotorula minuta CCT 1751 and Lipomyces starkeyi DSM 70296 were evaluated for the conversion of sugars from Brazilian molasses into single-cell oil (SCO) feedstock for biodiesel. Pulsed fed-batch fermentations were performed in 1.65 l working volume bioreactors. The maximum specific growth rate (µmax), lipid productivity (Pr) and cellular lipid content were, respectively, 0.23 h(-1), 0.41 g l(-1) h(-1), and 41% for Rsp. toruloides; 0.20 h(-1), 0.27 g l(-1) h(-1), and 36% for Rta. glutinis; 0.115 h(-1), 0.135 g l(-1) h(-1), and 27 % for Rta. minuta; and 0.11 h(-1), 0.13 g l(-1) h(-1), and 32% for L. starkeyi. Based on their microbial lipid productivity, content, and profile, Rsp. toruloides and Rta. glutinis are promising candidates for biodiesel production from Brazilian molasses. All the oils from the yeasts were similar to the composition of plant oils (rapeseed and soybean) and could be used as raw material for biofuels, as well as in food and nutraceutical products.