958 resultados para Graph Query
Resumo:
The problem of vertex coloring in random graphs is studied using methods of statistical physics and probability. Our analytical results are compared to those obtained by exact enumeration and Monte Carlo simulations. We critically discuss the merits and shortcomings of the various methods, and interpret the results obtained. We present an exact analytical expression for the two-coloring problem as well as general replica symmetric approximated solutions for the thermodynamics of the graph coloring problem with p colors and K-body edges. ©2002 The American Physical Society.
Resumo:
Database systems have a user interface one of the components of which will normally be a query language which is based on a particular data model. Typically data models provide primitives to define, manipulate and query databases. Often these primitives are designed to form self-contained query languages. This thesis describes a prototype implementation of a system which allows users to specify queries against the database in a query language whose primitives are not those provided by the actual model on which the database system is based, but those provided by a different data model. The implementation chosen is the Functional Query Language Front End (FQLFE). This uses the Daplex functional data model and query language. Using FQLFE, users can specify the underlying database (based on the relational model) in terms of Daplex. Queries against this specified view can then be made in Daplex. FQLFE transforms these queries into the query language (Quel) of the underlying target database system (Ingres). The automation of part of the Daplex function definition phase is also described and its implementation discussed.
Resumo:
This thesis includes analysis of disordered spin ensembles corresponding to Exact Cover, a multi-access channel problem, and composite models combining sparse and dense interactions. The satisfiability problem in Exact Cover is addressed using a statistical analysis of a simple branch and bound algorithm. The algorithm can be formulated in the large system limit as a branching process, for which critical properties can be analysed. Far from the critical point a set of differential equations may be used to model the process, and these are solved by numerical integration and exact bounding methods. The multi-access channel problem is formulated as an equilibrium statistical physics problem for the case of bit transmission on a channel with power control and synchronisation. A sparse code division multiple access method is considered and the optimal detection properties are examined in typical case by use of the replica method, and compared to detection performance achieved by interactive decoding methods. These codes are found to have phenomena closely resembling the well-understood dense codes. The composite model is introduced as an abstraction of canonical sparse and dense disordered spin models. The model includes couplings due to both dense and sparse topologies simultaneously. The new type of codes are shown to outperform sparse and dense codes in some regimes both in optimal performance, and in performance achieved by iterative detection methods in finite systems.
Resumo:
We address the question of how to communicate among distributed processes valuessuch as real numbers, continuous functions and geometrical solids with arbitrary precision, yet efficiently. We extend the established concept of lazy communication using streams of approximants by introducing explicit queries. We formalise this approach using protocols of a query-answer nature. Such protocols enable processes to provide valid approximations with certain accuracy and focusing on certain locality as demanded by the receiving processes through queries. A lattice-theoretic denotational semantics of channel and process behaviour is developed. Thequery space is modelled as a continuous lattice in which the top element denotes the query demanding all the information, whereas other elements denote queries demanding partial and/or local information. Answers are interpreted as elements of lattices constructed over suitable domains of approximations to the exact objects. An unanswered query is treated as an error anddenoted using the top element. The major novel characteristic of our semantic model is that it reflects the dependency of answerson queries. This enables the definition and analysis of an appropriate concept of convergence rate, by assigning an effort indicator to each query and a measure of information content to eachanswer. Thus we capture not only what function a process computes, but also how a process transforms the convergence rates from its inputs to its outputs. In future work these indicatorscan be used to capture further computational complexity measures. A robust prototype implementation of our model is available.
Resumo:
We develop and study the concept of dataflow process networks as used for exampleby Kahn to suit exact computation over data types related to real numbers, such as continuous functions and geometrical solids. Furthermore, we consider communicating these exact objectsamong processes using protocols of a query-answer nature as introduced in our earlier work. This enables processes to provide valid approximations with certain accuracy and focusing on certainlocality as demanded by the receiving processes through queries. We define domain-theoretical denotational semantics of our networks in two ways: (1) directly, i. e. by viewing the whole network as a composite process and applying the process semantics introduced in our earlier work; and (2) compositionally, i. e. by a fixed-point construction similarto that used by Kahn from the denotational semantics of individual processes in the network. The direct semantics closely corresponds to the operational semantics of the network (i. e. it iscorrect) but very difficult to study for concrete networks. The compositional semantics enablescompositional analysis of concrete networks, assuming it is correct. We prove that the compositional semantics is a safe approximation of the direct semantics. Wealso provide a method that can be used in many cases to establish that the two semantics fully coincide, i. e. safety is not achieved through inactivity or meaningless answers. The results are extended to cover recursively-defined infinite networks as well as nested finitenetworks. A robust prototype implementation of our model is available.
Resumo:
In this paper we propose an approach based on self-interested autonomous cameras, which exchange responsibility for tracking objects in a market mechanism, in order to maximise their own utility. A novel ant-colony inspired mechanism is used to grow the vision graph during runtime, which may then be used to optimise communication between cameras. The key benefits of our completely decentralised approach are on the one hand generating the vision graph online which permits the addition and removal cameras to the network during runtime and on the other hand relying only on local information, increasing the robustness of the system. Since our market-based approach does not rely on a priori topology information, the need for any multi-camera calibration can be avoided. © 2011 IEEE.
Resumo:
PowerAqua is a Question Answering system, which takes as input a natural language query and is able to return answers drawn from relevant semantic resources found anywhere on the Semantic Web. In this paper we provide two novel contributions: First, we detail a new component of the system, the Triple Similarity Service, which is able to match queries effectively to triples found in different ontologies on the Semantic Web. Second, we provide a first evaluation of the system, which in addition to providing data about PowerAqua's competence, also gives us important insights into the issues related to using the Semantic Web as the target answer set in Question Answering. In particular, we show that, despite the problems related to the noisy and incomplete conceptualizations, which can be found on the Semantic Web, good results can already be obtained.
Resumo:
Formulating complex queries is hard, especially when users cannot understand all the data structures of multiple complex knowledge bases. We see a gap between simplistic but user friendly tools and formal query languages. Building on an example comparison search, we propose an approach in which reusable search components take an intermediary role between the user interface and formal query languages.
Resumo:
This dissertation studies the caching of queries and how to cache in an efficient way, so that retrieving previously accessed data does not need any intermediary nodes between the data-source peer and the querying peer in super-peer P2P network. A precise algorithm was devised that demonstrated how queries can be deconstructed to provide greater flexibility for reusing their constituent elements. It showed how subsequent queries can make use of more than one previous query and any part of those queries to reconstruct direct data communication with one or more source peers that have supplied data previously. In effect, a new query can search and exploit the entire cached list of queries to construct the list of the data locations it requires that might match any locations previously accessed. The new method increases the likelihood of repeat queries being able to reuse earlier queries and provides a viable way of by-passing shared data indexes in structured networks. It could also increase the efficiency of unstructured networks by reducing traffic and the propensity for network flooding. In addition, performance evaluation for predicting query routing performance by using a UML sequence diagram is introduced. This new method of performance evaluation provides designers with information about when it is most beneficial to use caching and how the peer connections can optimize its exploitation.