933 resultados para Goal Programming
Object-Oriented Genetic Programming for the Automatic Inference of Graph Models for Complex Networks
Resumo:
Complex networks are systems of entities that are interconnected through meaningful relationships. The result of the relations between entities forms a structure that has a statistical complexity that is not formed by random chance. In the study of complex networks, many graph models have been proposed to model the behaviours observed. However, constructing graph models manually is tedious and problematic. Many of the models proposed in the literature have been cited as having inaccuracies with respect to the complex networks they represent. However, recently, an approach that automates the inference of graph models was proposed by Bailey [10] The proposed methodology employs genetic programming (GP) to produce graph models that approximate various properties of an exemplary graph of a targeted complex network. However, there is a great deal already known about complex networks, in general, and often specific knowledge is held about the network being modelled. The knowledge, albeit incomplete, is important in constructing a graph model. However it is difficult to incorporate such knowledge using existing GP techniques. Thus, this thesis proposes a novel GP system which can incorporate incomplete expert knowledge that assists in the evolution of a graph model. Inspired by existing graph models, an abstract graph model was developed to serve as an embryo for inferring graph models of some complex networks. The GP system and abstract model were used to reproduce well-known graph models. The results indicated that the system was able to evolve models that produced networks that had structural similarities to the networks generated by the respective target models.
Resumo:
This study explored goal setting among children with reading disabilities. Of particular focus was the goal setting experience of participants in a literacy-based program, titled “Reading Rocks”. Reading Rocks, offered by the Learning Disabilities Association of Niagara Region (LDANR), supports children with reading disabilities to become more confident readers. The program aims to strengthen literacy skills among vulnerable readers. Another essential component of the program targets children’s reading motivation through goal setting, a recognized strategy for increasing motivation. I outline the importance of reading, followed by exploring children’s reluctance to read. Goal setting is examined as an opportunity to increase motivation among reluctant readers. My research included a qualitative case study of one child-tutor pair in the program. I utilized a think-aloud protocol, a photo elicitation interview, and researcher observations to collect my data. Lastly, I triangulated the data to analyze how children in Reading Rocks experience goal setting.
Resumo:
Interior illumination is a complex problem involving numerous interacting factors. This research applies genetic programming towards problems in illumination design. The Radiance system is used for performing accurate illumination simulations. Radiance accounts for a number of important environmental factors, which we exploit during fitness evaluation. Illumination requirements include local illumination intensity from natural and artificial sources, colour, and uniformity. Evolved solutions incorporate design elements such as artificial lights, room materials, windows, and glass properties. A number of case studies are examined, including many-objective problems involving up to 7 illumination requirements, the design of a decorative wall of lights, and the creation of a stained-glass window for a large public space. Our results show the technical and creative possibilities of applying genetic programming to illumination design.
Resumo:
As a result of mutation in genes, which is a simple change in our DNA, we will have undesirable phenotypes which are known as genetic diseases or disorders. These small changes, which happen frequently, can have extreme results. Understanding and identifying these changes and associating these mutated genes with genetic diseases can play an important role in our health, by making us able to find better diagnosis and therapeutic strategies for these genetic diseases. As a result of years of experiments, there is a vast amount of data regarding human genome and different genetic diseases that they still need to be processed properly to extract useful information. This work is an effort to analyze some useful datasets and to apply different techniques to associate genes with genetic diseases. Two genetic diseases were studied here: Parkinson’s disease and breast cancer. Using genetic programming, we analyzed the complex network around known disease genes of the aforementioned diseases, and based on that we generated a ranking for genes, based on their relevance to these diseases. In order to generate these rankings, centrality measures of all nodes in the complex network surrounding the known disease genes of the given genetic disease were calculated. Using genetic programming, all the nodes were assigned scores based on the similarity of their centrality measures to those of the known disease genes. Obtained results showed that this method is successful at finding these patterns in centrality measures and the highly ranked genes are worthy as good candidate disease genes for being studied. Using standard benchmark tests, we tested our approach against ENDEAVOUR and CIPHER - two well known disease gene ranking frameworks - and we obtained comparable results.
Resumo:
The curse of dimensionality is a major problem in the fields of machine learning, data mining and knowledge discovery. Exhaustive search for the most optimal subset of relevant features from a high dimensional dataset is NP hard. Sub–optimal population based stochastic algorithms such as GP and GA are good choices for searching through large search spaces, and are usually more feasible than exhaustive and deterministic search algorithms. On the other hand, population based stochastic algorithms often suffer from premature convergence on mediocre sub–optimal solutions. The Age Layered Population Structure (ALPS) is a novel metaheuristic for overcoming the problem of premature convergence in evolutionary algorithms, and for improving search in the fitness landscape. The ALPS paradigm uses an age–measure to control breeding and competition between individuals in the population. This thesis uses a modification of the ALPS GP strategy called Feature Selection ALPS (FSALPS) for feature subset selection and classification of varied supervised learning tasks. FSALPS uses a novel frequency count system to rank features in the GP population based on evolved feature frequencies. The ranked features are translated into probabilities, which are used to control evolutionary processes such as terminal–symbol selection for the construction of GP trees/sub-trees. The FSALPS metaheuristic continuously refines the feature subset selection process whiles simultaneously evolving efficient classifiers through a non–converging evolutionary process that favors selection of features with high discrimination of class labels. We investigated and compared the performance of canonical GP, ALPS and FSALPS on high–dimensional benchmark classification datasets, including a hyperspectral image. Using Tukey’s HSD ANOVA test at a 95% confidence interval, ALPS and FSALPS dominated canonical GP in evolving smaller but efficient trees with less bloat expressions. FSALPS significantly outperformed canonical GP and ALPS and some reported feature selection strategies in related literature on dimensionality reduction.
Resumo:
Positive Youth Development (PYD) research has started to shift focus onto how different internal factors such as temperament, dispositions, and/or personality characteristics could influence levels of PYD for youth participating is organized sport. The purpose of this study is to examine how different goal profiles, specifically categorized by diverse levels of task and ego orientation, can influence levels of PYD in an organized youth sport setting. One hundred youth sport participants (mean age = 16.8) completed the short form Youth Experiences Survey for Sport (short form YES-S; Sullivan et al., 2013) to measure PYD, as well as the Task and Ego Orientation in Sport Questionnaire (TEOSQ; Duba 1989) to assess each athlete’s goal profile. A TwoStep Cluster Analysis was used to classify each individual’s personal goal profile into 3 statistically different cluster groupings. Results indicated significant interaction between the PYD outcome factor of Initiative vs. Clusters [F(2,95)= 10.86, p < 0.001, p2= 0.19] as well as Goal Setting vs. Clusters [F(2,95)= 3.95, p < 0.05, p2= 0.08]. Post-hoc analyses provided results that suggest that those athletes who are more task oriented have fostered more positive outcomes from sport, therefore having more goal setting skills and initiative.
Resumo:
The curse of dimensionality is a major problem in the fields of machine learning, data mining and knowledge discovery. Exhaustive search for the most optimal subset of relevant features from a high dimensional dataset is NP hard. Sub–optimal population based stochastic algorithms such as GP and GA are good choices for searching through large search spaces, and are usually more feasible than exhaustive and determinis- tic search algorithms. On the other hand, population based stochastic algorithms often suffer from premature convergence on mediocre sub–optimal solutions. The Age Layered Population Structure (ALPS) is a novel meta–heuristic for overcoming the problem of premature convergence in evolutionary algorithms, and for improving search in the fitness landscape. The ALPS paradigm uses an age–measure to control breeding and competition between individuals in the population. This thesis uses a modification of the ALPS GP strategy called Feature Selection ALPS (FSALPS) for feature subset selection and classification of varied supervised learning tasks. FSALPS uses a novel frequency count system to rank features in the GP population based on evolved feature frequencies. The ranked features are translated into probabilities, which are used to control evolutionary processes such as terminal–symbol selection for the construction of GP trees/sub-trees. The FSALPS meta–heuristic continuously refines the feature subset selection process whiles simultaneously evolving efficient classifiers through a non–converging evolutionary process that favors selection of features with high discrimination of class labels. We investigated and compared the performance of canonical GP, ALPS and FSALPS on high–dimensional benchmark classification datasets, including a hyperspectral image. Using Tukey’s HSD ANOVA test at a 95% confidence interval, ALPS and FSALPS dominated canonical GP in evolving smaller but efficient trees with less bloat expressions. FSALPS significantly outperformed canonical GP and ALPS and some reported feature selection strategies in related literature on dimensionality reduction.
Resumo:
La version intégrale de ce mémoire est disponible uniquement pour consultation individuelle à la Bibliothèque de musique de l’Université de Montréal (http://www.bib.umontreal.ca/MU).
Resumo:
Les structures avec des lieurs sont très communes en informatique. Les langages de programmation et les systèmes logiques sont des exemples de structures avec des lieurs. La manipulation de lieurs est délicate, de sorte que l’écriture de programmes qui ma- nipulent ces structures tirerait profit d’un soutien spécifique pour les lieurs. L’environ- nement de programmation Beluga est un exemple d’un tel système. Nous développons et présentons ici un compilateur pour ce système. Parmi les programmes pour lesquels Beluga est spécialement bien adapté, plusieurs peuvent bénéficier d’un compilateur. Par exemple, les programmes pour valider les types (les "type-checkers"), les compilateurs et les interpréteurs tirent profit du soutien spécifique des lieurs et des types dépendants présents dans le langage. Ils nécessitent tous également une exécution efficace, que l’on propose d’obtenir par le biais d’un compilateur. Le but de ce travail est de présenter un nouveau compilateur pour Beluga, qui emploie une représentation interne polyvalente et permet de partager du code entre plusieurs back-ends. Une contribution notable est la compilation du filtrage de Beluga, qui est particulièrement puissante dans ce langage.
Resumo:
UNE EXPOSITION NÉONATALE À L’OXYGÈNE MÈNE À DES MODIFICATIONS DE LA FONCTION MITOCHONDRIALE CHEZ LE RAT ADULTE Introduction: L’exposition à l’oxygène (O2) des ratons nouveau-nés a des conséquences à l’âge adulte dont une hypertension artérielle (HTA), une dysfonction vasculaire, une néphropénie et des indices de stress oxydant. En considérant que les reins sont encore en développement actif lors des premiers jours après la naissance chez les rats, jouent un rôle clé dans le développement de l’hypertension et qu’une dysfonction mitochondriale est associé à une augmentation du stress oxydant, nous postulons que les conditions délétères néonatales peuvent avoir un impact significatif au niveau rénal sur la modulation de l’expression de protéines clés du fonctionnement mitochondrial et une production mitochondriale excessive d’espèces réactives de l’ O2. Méthodes: Des ratons Sprague-Dawley sont exposés à 80% d’O2 (H) ou 21% O2 (Ctrl) du 3e au 10e jr de vie. En considérant que plusieurs organes des rats sont encore en développement actif à la naissance, ces rongeurs sont un modèle reconnu pour étudier les complications d’une hyperoxie néonatale, comme celles liées à une naissance prématurée chez l’homme. À 4 et à 16 semaines, les reins sont prélevés et les mitochondries sont extraites suivant une méthode d’extraction standard, avec un tampon contenant du sucrose 0.32 M et différentes centrifugations. L’expression des protéines mitochondriales a été mesurée par Western blot, tandis que la production d’ H202 et les activités des enzymes clés du cycle de Krebs ont été évaluées par spectrophotométrie. Les résultats sont exprimés par la moyenne ± SD. Résultats: Les rats mâles H de 16 semaines (n=6) présentent une activité de citrate synthase (considéré standard interne de l’expression protéique et de l’abondance mitochondriales) augmentée (12.4 ± 8.4 vs 4.1 ± 0.5 μmole/mL/min), une diminution de l’activité d’aconitase (enzyme sensible au redox mitochondrial) (0.11 ± 0.05 vs 0.20 ± 0.04 μmoles/min/mg mitochondrie), ainsi qu’une augmentation dans la production de H202 (7.0 ± 1.3 vs 5.4 ± 0.8 ρmoles/mg protéines mitochondriales) comparativement au groupe Ctrl (n=6 mâles et 4 femelles). Le groupe H (vs Ctrl) présente également une diminution dans l’expression de peroxiredoxin-3 (Prx3) (H 0.61±0.06 vs. Ctrl 0.78±0.02 unité relative, -23%; p<0.05), une protéine impliquée dans l’élimination d’ H202, de l’expression du cytochrome C oxidase (Complexe IV) (H 1.02±0.04 vs. Ctrl 1.20±0.02 unité relative, -15%; p<0.05), une protéine de la chaine de respiration mitochondriale, tandis que l’expression de la protéine de découplage (uncoupling protein)-2 (UCP2), impliquée dans la dispersion du gradient proton, est significativement augmentée (H 1.05±0.02 vs. Ctrl 0.90±0.03 unité relative, +17%; p<0.05). Les femelles H (n=6) (vs Ctrl, n=6) de 16 semaines démontrent une augmentation significative de l’activité de l’aconitase (0.33±0.03 vs 0.17±0.02 μmoles/min/mg mitochondrie), de l’expression de l’ATP synthase sous unité β (H 0.73±0.02 vs. Ctrl 0.59±0.02 unité relative, +25%; p<0.05) et de l’expression de MnSOD (H 0.89±0.02 vs. Ctrl 0.74±0.03 unité relative, +20%; p<0.05) (superoxide dismutase mitochondriale, important antioxidant), tandis que l’expression de Prx3 est significativement réduite (H 1.1±0.07 vs. Ctrl 0.85±0.01 unité relative, -24%; p<0.05). À 4 semaines, les mâles H (vs Ctrl) présentent une augmentation significative de l’expression de Prx3 (H 0.72±0.03 vs. Ctrl 0.56±0.04 unité relative, +31%; p<0.05) et les femelles présentent une augmentation significative de l’expression d’UCP2 (H 1.22±0.05 vs. Ctrl 1.03±0.04 unité relative, +18%; p<0.05) et de l’expression de MnSOD (H 1.36±0.01 vs. 1.19±0.06 unité relative, +14%; p<0.05). Conclusions: Une exposition néonatale à l’O2 chez le rat adulte mène à des indices de dysfonction mitochondriale dans les reins adultes, associée à une augmentation dans la production d’espèces réactives de l’oxygène, suggérant que ces modifications mitochondriales pourraient jouer un rôle dans l’hypertension artérielle et d’un stress oxydant, et par conséquent, être un facteur possible dans la progression vers des maladies cardiovasculaires. Mots-clés: Mitochondries, Reins, Hypertension, Oxygène, Stress Oxydant, Programmation
Resumo:
La programmation linéaire en nombres entiers est une approche robuste qui permet de résoudre rapidement de grandes instances de problèmes d'optimisation discrète. Toutefois, les problèmes gagnent constamment en complexité et imposent parfois de fortes limites sur le temps de calcul. Il devient alors nécessaire de développer des méthodes spécialisées afin de résoudre approximativement ces problèmes, tout en calculant des bornes sur leurs valeurs optimales afin de prouver la qualité des solutions obtenues. Nous proposons d'explorer une approche de reformulation en nombres entiers guidée par la relaxation lagrangienne. Après l'identification d'une forte relaxation lagrangienne, un processus systématique permet d'obtenir une seconde formulation en nombres entiers. Cette reformulation, plus compacte que celle de Dantzig et Wolfe, comporte exactement les mêmes solutions entières que la formulation initiale, mais en améliore la borne linéaire: elle devient égale à la borne lagrangienne. L'approche de reformulation permet d'unifier et de généraliser des formulations et des méthodes de borne connues. De plus, elle offre une manière simple d'obtenir des reformulations de moins grandes tailles en contrepartie de bornes plus faibles. Ces reformulations demeurent de grandes tailles. C'est pourquoi nous décrivons aussi des méthodes spécialisées pour en résoudre les relaxations linéaires. Finalement, nous appliquons l'approche de reformulation à deux problèmes de localisation. Cela nous mène à de nouvelles formulations pour ces problèmes; certaines sont de très grandes tailles, mais nos méthodes de résolution spécialisées les rendent pratiques.
Resumo:
Les systèmes logiciels sont devenus de plus en plus répondus et importants dans notre société. Ainsi, il y a un besoin constant de logiciels de haute qualité. Pour améliorer la qualité de logiciels, l’une des techniques les plus utilisées est le refactoring qui sert à améliorer la structure d'un programme tout en préservant son comportement externe. Le refactoring promet, s'il est appliqué convenablement, à améliorer la compréhensibilité, la maintenabilité et l'extensibilité du logiciel tout en améliorant la productivité des programmeurs. En général, le refactoring pourra s’appliquer au niveau de spécification, conception ou code. Cette thèse porte sur l'automatisation de processus de recommandation de refactoring, au niveau code, s’appliquant en deux étapes principales: 1) la détection des fragments de code qui devraient être améliorés (e.g., les défauts de conception), et 2) l'identification des solutions de refactoring à appliquer. Pour la première étape, nous traduisons des régularités qui peuvent être trouvés dans des exemples de défauts de conception. Nous utilisons un algorithme génétique pour générer automatiquement des règles de détection à partir des exemples de défauts. Pour la deuxième étape, nous introduisons une approche se basant sur une recherche heuristique. Le processus consiste à trouver la séquence optimale d'opérations de refactoring permettant d'améliorer la qualité du logiciel en minimisant le nombre de défauts tout en priorisant les instances les plus critiques. De plus, nous explorons d'autres objectifs à optimiser: le nombre de changements requis pour appliquer la solution de refactoring, la préservation de la sémantique, et la consistance avec l’historique de changements. Ainsi, réduire le nombre de changements permets de garder autant que possible avec la conception initiale. La préservation de la sémantique assure que le programme restructuré est sémantiquement cohérent. De plus, nous utilisons l'historique de changement pour suggérer de nouveaux refactorings dans des contextes similaires. En outre, nous introduisons une approche multi-objective pour améliorer les attributs de qualité du logiciel (la flexibilité, la maintenabilité, etc.), fixer les « mauvaises » pratiques de conception (défauts de conception), tout en introduisant les « bonnes » pratiques de conception (patrons de conception).
Resumo:
The theme of the thesis is centred around one important aspect of wireless sensor networks; the energy-efficiency.The limited energy source of the sensor nodes calls for design of energy-efficient routing protocols. The schemes for protocol design should try to minimize the number of communications among the nodes to save energy. Cluster based techniques were found energy-efficient. In this method clusters are formed and data from different nodes are collected under a cluster head belonging to each clusters and then forwarded it to the base station.Appropriate cluster head selection process and generation of desirable distribution of the clusters can reduce energy consumption of the network and prolong the network lifetime. In this work two such schemes were developed for static wireless sensor networks.In the first scheme, the energy wastage due to cluster rebuilding incorporating all the nodes were addressed. A tree based scheme is presented to alleviate this problem by rebuilding only sub clusters of the network. An analytical model of energy consumption of proposed scheme is developed and the scheme is compared with existing cluster based scheme. The simulation study proved the energy savings observed.The second scheme concentrated to build load-balanced energy efficient clusters to prolong the lifetime of the network. A voting based approach to utilise the neighbor node information in the cluster head selection process is proposed. The number of nodes joining a cluster is restricted to have equal sized optimum clusters. Multi-hop communication among the cluster heads is also introduced to reduce the energy consumption. The simulation study has shown that the scheme results in balanced clusters and the network achieves reduction in energy consumption.The main conclusion from the study was the routing scheme should pay attention on successful data delivery from node to base station in addition to the energy-efficiency. The cluster based protocols are extended from static scenario to mobile scenario by various authors. None of the proposals addresses cluster head election appropriately in view of mobility. An elegant scheme for electing cluster heads is presented to meet the challenge of handling cluster durability when all the nodes in the network are moving. The scheme has been simulated and compared with a similar approach.The proliferation of sensor networks enables users with large set of sensor information to utilise them in various applications. The sensor network programming is inherently difficult due to various reasons. There must be an elegant way to collect the data gathered by sensor networks with out worrying about the underlying structure of the network. The final work presented addresses a way to collect data from a sensor network and present it to the users in a flexible way.A service oriented architecture based application is built and data collection task is presented as a web service. This will enable composition of sensor data from different sensor networks to build interesting applications. The main objective of the thesis was to design energy-efficient routing schemes for both static as well as mobile sensor networks. A progressive approach was followed to achieve this goal.
Resumo:
In order to minimize the risk of failures or major renewals of hull structures during the ship's expected life span, it is imperative that the precaution must be taken with regard to an adequate margin of safety against any one or combination of failure modes including excessive yielding, buckling, brittle fracture, fatigue and corrosion. The most efficient system for combating underwater corrosion is 'cathodic protection'. The basic principle of this method is that the ship's structure is made cathodic, i.e. the anodic (corrosion) reactions are suppressed by the application of an opposing current and the ship is there by protected. This paper deals with state of art in cathodic protection and its programming in ship structure