943 resultados para Glomerular Filtration Rate
Resumo:
Introduction: To study the functional and hystological alterations in dog kidneys submitted to total ischemia for thirty minutes and the possible metoprolol protective action. Material and methods: Sixteen dogs anesthetized with sodium pentobarbital (SP) were studied and divided into two groups: G1-8 dogs submitted to left nephrectomy and right renal artery clamping for thirty minutes, and G2-8 dogs submitted to the same procedures of G1 and to the administration of 0.5 mg.kg(-1) metoprolol before ischemia. Attributes of renal function were studied. Results: There was acute tubular necrosis and a decrease of renal blood flow and glomerular filtration, and a increase of renal vascular resistance in both groups. Conclusion: the thirty minute renal ischemia appears to have determined the alterations found in the renal function and hystology in both groups. Metoprolol, used in G2, as to the time and dose applied didn't protect the kidney from the ischemic episode.
Resumo:
The vegetal species, Allium cepa, known as onion, is widely used in the folk medicine as diuretic, besides it has been used on the bronchitis, cough, cardiovascular diseases and hypertension treatment. In this study we evaluate the onion aqueous extract (AE) effect on water flow and electrolytes in anesthetized Wistar rats, besides we also evaluate arterial pressure alterations. Two groups were studied: Group 1 (control) - oral tratment with 1.0 mL of distilled water, and Group 2 (experimental) - oral treatment with 1.0 mL of AE 20%. The rats were anesthetized and we canulate the trachea, left carotide artery (for arterial pressure measurement and blood collecting), jugular vein (to execute inulin perfusion - to register glomerular filtration), and urinary bladder (to collect urine). The Group 1 results had shown that the animals had not presented significant alterations (p>0.05) in the analyzed parameters. The animals of Group 2 had a significant reduction (p<0.05) in the arterial pressure (22.0%). However, there were not significant alterations in renal parameters (p>0.05). These results show that the treatment with the AE lead a hypotensor effect in anesthetized Wistar rats, but not followed by renal parameters alterations.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Inflammation contributes to the pathogenesis of chronic kidney disease (CKD). Molecules released by the inflamed injured tissue can activate toll-like receptors (TLRs), thereby modulating macrophage and CD4+ T-cell activity. We propose that in renal fibrogenesis, M2 macrophages are recruited and activated in a T helper subset 2 cell (TH2)-prone inflammatory milieu in a MyD88- dependent manner. Mice submitted to unilateral ureteral ligation (UUO) demonstrated an increase in macrophage infiltration with collagen deposition after 7 d. Conversely, TLR2, TLR4 and MyD88 knockout (KO) mice had an improved renal function together with diminished TH2 cytokine production and decreased fibrosis formation. Moreover, TLR2, TLR4 and MyD88 KO animals exhibited less M2 macrophage infiltration, namely interleukin (IL)-10+ and CD206+ CD11bhigh cells, at 7 d after surgery. We evaluated the role of a TH2 cytokine in this context, and observed that the absence of IL-4 was associated with better renal function, decreased IL-13 and TGF- β levels, reduced arginase activity and a decrease in fibrosis formation when compared with IL-12 KO and wild-type (WT) animals. Indeed, the better renal outcomes and the decreased fibrosis formation were restricted to the deficiency of IL-4 in the hematopoietic compartment. Finally, macrophage depletion, rather than the absence of T cells, led to reduced lesions of the glomerular filtration barrier and decreased collagen deposition. These results provide evidence that future therapeutic strategies against renal fibrosis should be accompanied by the modulation of the M1:M2 and TH1:TH2 balance, as TH2 and M2 cells are predictive of fibrosis toward mechanisms that are sensed by innate immune response and triggered in a MyD88-dependent pathway.
Resumo:
Pulmonary capillary pressure (Pcap) is the predominant force that drives fluid out of the pulmonary capillaries into the interstitium. Increasing hydrostatic capillary pressure is directly proportional to the lung's transvascular filtration rate, and in the extreme leads to pulmonary edema. In the pulmonary circulation, blood flow arises from the transpulmonary pressure gradient, defined as the difference between pulmonary artery (diastolic) pressure and left atrial pressure. The resistance across the pulmonary vasculature consists of arterial and venous components, which interact with the capacitance of the compliant pulmonary capillaries. In pathological states such as acute respiratory distress syndrome, sepsis, and high altitude or neurogenic lung edema, the longitudinal distribution of the precapillary arterial and the postcapillary venous resistance varies. Subsequently, the relationship between Pcap and pulmonary artery occlusion pressure (PAOP) is greatly variable and Pcap can no longer be predicted from PAOP. In clinical practice, PAOP is commonly used to guide fluid therapy, and Pcap as a hemodynamic target is rarely assessed. This approach is potentially misleading. In the presence of a normal PAOP and an increased pressure gradient between Pcap and PAOP, the tendency for fluid leakage in the capillaries and subsequent edema development may substantially be underestimated. Tho-roughly validated methods have been developed to assess Pcap in humans. At the bedside, measurement of Pcap can easily be determined by analyzing a pressure transient after an acute pulmonary artery occlusion with the balloon of a Swan-Ganz catheter.
Resumo:
Selective flocculation and dispersion processes rely on differences in the surface chemistry of fine mineral particles (<25 >ìm) to allow for the concentration of specific minerals from an ore body. The effectiveness of selective flocculation and dispersion processes for the concentration of hematite (Fe2O3) ore are strongly dependent on the ionic content of the process water. The goal of this research was to analyze the ionic content of an operating selective flocculation and dispersion type hematite ore concentrator and determine how carbon dioxide affects the filtration of the final product. A detailed water chemistry analysis of the entire process was determined to show concentration profiles throughout the process. This information was used to explain process phenomena and promote future research into this subject. A subsequent laboratory study was conducted to show how carbon dioxide affects filtration rate and relate this effect to the zeta potential of the constituents of the concentrated hematite ore.
Resumo:
BACKGROUND: Tenofovir (TDF) use has been associated with proximal renal tubulopathy, reduced calculated glomerular filtration rates (cGFR) and losses in bone mineral density. Bone resorption could result in a compensatory osteoblast activation indicated by an increase in serum alkaline phosphatase (sAP). A few small studies have reported a positive correlation between renal phosphate losses, increased bone turnover and sAP. METHODS: We analysed sAP dynamics in patients initiating (n = 657), reinitiating (n = 361) and discontinuing (n = 73) combined antiretroviral therapy with and without TDF and assessed correlations with clinical and epidemiological parameters. RESULTS: TDF use was associated with a significant increase of sAP from a median of 74 U/I (interquartile range 60-98) to a plateau of 99 U/I (82-123) after 6 months (P < 0.0001), with a prompt return to baseline upon TDF discontinuation. No change occurred in TDF-sparing regimes. Univariable and multivariable linear regression analyses revealed a positive correlation between sAP and TDF use (P < or = 0.003), but no correlation with baseline cGFR, TDF-related cGFR reduction, changes in serum alanine aminotransferase (sALT) or active hepatitis C. CONCLUSIONS: We document a highly significant association between TDF use and increased sAP in a large observational cohort. The lack of correlation between TDF use and sALT suggests that the increase in sAP is because of the bone isoenzyme and indicates stimulated bone turnover. This finding, together with published data on TDF-related renal phosphate losses, this finding raises concerns that TDF use could result in osteomalacia with a loss in bone mineral density at least in a subset of patients. This potentially severe long-term toxicity should be addressed in future studies.
Resumo:
The term proteinuria is taken to mean abnormally high protein excretion in the urine. Proteinuria is the consequence of glomerular filtration of plasma proteins, their subsequent reabsorption by the proximal tubular cells and secretion of protein by the tubular cells and distal urinary tract. In physiological conditions, the structural integry of the glomerular filtration barrier prevents the abnormal passage of albumin (molecular mass 66 kDa) and high-molecular-weight proteins (> 66 kDa), whereas the passage of low-molecular-weight proteins (< 66 kDa) is almost completely unrestricted. Proteins that arrive the tubular lumen are reabsorbed by endocytosis after binding to the megalin-cubilin complex. An increased load of proteins in the tubular lumen leads to the saturation of the reabsorptive mechanism and higher urinary protein excretion. Proteinuria can originate from prerenal, renal and postrenal causes. Elevated tubular protein concentrations have been recognized to be toxic to tubular cells and associated with the progression of chronic renal disease. Therefore, the quantitative and qualitative evaluation of proteinuria is important for the diagnosis of renal disease.
Resumo:
BACKGROUND Primary hyperoxaluria type 3 (PH3) is characterized by mutations in the 4-hydroxy-2-oxoglutarate aldolase (HOGA1) gene. PH3 patients are believed to present with a less severe phenotype than those with PH1 and PH2, but the clinical characteristics of PH3 patients have yet to be defined in sufficient detail. The aim of this study was to report our experience with PH3. METHODS Genetic analysis of HOGA1 was performed in patients with a high clinical suspicion of PH after the presence of mutations in the alanine-glyoxylate aminotransferase gene had been ruled out. Clinical, biochemical and genetic data of the seven patients identified with HOGA1 mutations were subsequently retrospectively reviewed. RESULTS Among the seven patients identified with HOGA1 mutations the median onset of clinical symptoms was 1.8 (range 0.4-9.8) years. Five patients initially presented with urolithiasis, and two other patients presented with urinary tract infection. All patients experienced persistent hyperoxaluria. Seven mutations were found in HOGA1, including two previously unreported ones, c.834 + 1G > T and c.3G > A. At last follow-up, two patients had impaired renal function based on estimated glomerular filtration rates (GFRs) of 77 and 83 mL/min per 1.73 m(2), respectively. CONCLUSIONS We found that the GFR was significantly impaired in two of our seven patients with PH3 diagnosed during childhood. This finding is in contrast to the early-impaired renal function in PH1 and PH2 and appears to refute to preliminary reassuring data on renal function in PH3.
Resumo:
Distribution, density, and feeding dynamics of the pelagic tunicate Salpa thompsoni have been investigated during the expedition ANTARKTIS XVIII/5b to the Eastern Bellingshausen Sea on board RV Polarstern in April 2001. This expedition was the German contribution to the field campaign of the Southern Ocean Global Ocean Ecosystems Dynamics Study (SO-GLOBEC). Salps were found at 31% of all RMT-8 and Bongo stations. Their densities in the RMT-8 samples were low and did not exceed 4.8 ind/m**2 and 7.4 mg C/m**2. However, maximum salp densities sampled with the Bongo net reached 56 ind/m**2 and 341 mg C/m**2. A bimodal salp length frequency distribution was recorded over the shelf, and suggested two recent budding events. This was also confirmed by the developmental stage composition of solitary forms. Ingestion rates of aggregate forms increased from 2.8 to 13.9 µg (pig)/ind/day or from 0.25 to 2.38 mg C/ind/day in salps from 10 to 40 mm oral-atrial length, accounting for 25-75% of body carbon per day. Faecal pellet production rates were on average 0.08 pellet/ind/h with a pronounced diel pattern. Daily individual egestion rates in 13 and 30 mm aggregates ranged from 0.6 to 4.8 µg (pig)/day or from 164 to 239 µg C/day. Assimilation efficiency ranged from 73 to 90% and from 65 to 76% in 13 and 30 mm aggregates, respectively. S. thompsoni exhibited similar ingestion and egestion rates previously estimated for low Antarctic (~50°S) habitats. It has been suggested that the salp population was able to develop in the Eastern Bellingshausen Sea due to an intrusion into the area of the warm Upper Circumpolar Deep Water
Resumo:
Background and Aims: We have optimized the isolated perfused mouse kidney (IPMK) model for studying renal vascular and tubular function in vitro using 24-28 g C57BL6J mice; the wild type controls for many transgenic mice. Methods and Results: Buffer composition was optimized for bovine serum albumin concentration (BSA). The effect of adding erythrocytes on renal function and morphology was assessed. Autoregulation was investigated during stepped increases in perfusion pressure. Perfusion for 60 min at 90-110 mmHg with Krebs bicarbonate buffer containing 5.5% BSA, and amino acids produced functional parameters within the in vivo range. Erythrocytes increased renal vascular resistance (3.8 +/- 0.2 vs 2.4 +/- 0.1 mL/min.mmHg, P < 0.05), enhanced sodium reabsorption (FENa = 0.3 +/- 0.08 vs 1.5 +/- 0.7%, P < 0.05), produced equivalent glomerular filtration rates (GFR; 364 +/- 38 vs 400 +/- 9 muL/min per gkw) and reduced distal tubular cell injury in the inner stripe (5.8 +/- 1.7 vs 23.7 +/- 3.1%, P < 0.001) compared to cell free perfusion. The IPMK was responsive to vasoconstrictor (angiotensin II, EC50 100 pM) and vasodilator (methacholine, EC50 75 nM) mediators and showed partial autoregulation of perfusate flow under control conditions over 65-85 mmHg; autoregulatory index (ARI) of 0.66 +/- 0.11. Angiotensin II (100 pM) extended this range (to 65-120 mmHg) and enhanced efficiency (ARI 0.21 +/- 0.02, P < 0.05). Angiotensin II facilitation was antagonized by methacholine (ARI 0.76 +/- 0.08) and papaverine (ARI 0.91 +/- 0.13). Conclusion: The IPMK model is useful for studying renal physiology and pathophysiology without systemic neurohormonal influences.