866 resultados para Gait in humans


Relevância:

100.00% 100.00%

Publicador:

Resumo:

When a visual stimulus is continuously moved behind a small stationary window, the window appears displaced in the direction of motion of the stimulus. In this study we showed that the magnitude of this illusion is dependent on (i) whether a perceptual or visuomotor task is used for judging the location of the window, (ii) the directional signature of the stimulus, and (iii) whether or not there is a significant delay between the end of the visual presentation and the initiation of the localization measure. Our stimulus was a drifting sinusoidal grating windowed in space by a stationary, two-dimensional, Gaussian envelope (σ=1 cycle of sinusoid). Localization measures were made following either a short (200 ms) or long (4.2 s) post-stimulus delay. The visuomotor localization error was up to three times greater than the perceptual error for a short delay. However, the visuomotor and perceptual localization measures were similar for a long delay. Our results provide evidence in support of the hypothesis that separate cortical pathways exist for visual perception and visually guided action and that delayed actions rely on stored perceptual information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The human NT2.D1 cell line was differentiated to form both a 1:2 co-culture of post-mitotic NT2 neuronal and NT2 astrocytic (NT2.N/A) cells and a pure NT2.N culture. The respective sensitivities to several test chemicals of the NT2.N/A, the NT2.N, and the NT2.D1 cells were evaluated and compared with the CCF-STTG1 astrocytoma cell line, using a combination of basal cytotoxicity and biochemical endpoints. Using the MTT assay, the basal cytotoxicity data estimated the comparative toxicities of the test chemicals (chronic neurotoxin 2,5-hexanedione, cytotoxins 2,3- and 3,4-hexanedione and acute neurotoxins tributyltin- and trimethyltin- chloride) and also provided the non-cytotoxic concentration-range for each compound. Biochemical endpoints examined over the non-cytotoxic range included assays for ATP levels, oxidative status (H2O2 and GSH levels) and caspase-3 levels as an indicator of apoptosis. although the endpoints did not demonstrate the known neurotoxicants to be consistently more toxic to the cell systems with the greatest number of neuronal properties, the NT2 astrocytes appeared to contribute positively to NT2 neuronal health following exposure to all the test chemicals. The NT2.N/A co-culture generally maintained superior ATP and GSH levels and reduced H2O2 levels in comparison with the NT2.N mono-culture. In addition, the pure NT2.N culture showed a significantly lower level of caspase-3 activation compared with the co-culture, suggesting NT2 astrocytes may be important in modulating the mode of cell death following toxic insult. Overall, these studies provide evidence that an in vitro integrated population of post-mitotic human neurons and astrocytes may offer significant relevance to the human in vivo heterogeneous nervous system, when initially screening compounds for acute neurotoxic potential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Continuous theta burst stimulation (cTBS) is a repetitive transcranial magnetic stimulation protocol that can inhibithumanmotor cortex (M1) excitability and impair movement for ≤1 h. While offering valuable insights into brain function and potential therapeutic benefits, these neuroplastic effects are highly variable between individuals. The source of this variability, and the electrophysiological mechanisms underlying the inhibitory after-effects, are largely unknown. In this regard, oscillatory activity at beta frequency (15-35 Hz) is of particular interest as it is elevated in motor disorders such as Parkinson's disease and modulated during the generation of movements. Here, we used a source-level magnetoencephalography approach to investigate the hypothesis that the presence of neuroplastic effects following cTBS is associated with concurrent changes in oscillatory M1 beta activity. M1 cortices were localized with a synthetic aperture magnetometry beamforming analysis of visually cued index finger movements. Virtual electrode analysis was used to reconstruct the spontaneous and movement-related oscillatory activity in bilateral M1 cortices, before and from 10 to 45 min after cTBS. We demonstrate that 40 s of cTBS applied over left M1 reduced corticospinal excitability in the right index finger of 8/16 participants. In these responder participants only, cTBS increased the power of the spontaneous beta oscillations in stimulated M1 and delayed reaction times in the contralateral index finger. No further changes were observed in the latency or power of movement-related beta oscillations. These data provide insights into the electrophysiological mechanisms underlying cTBS-mediated impairment of motor function and demonstrate the association between spontaneous oscillatory beta activity in M1 and the inhibition of motor function. © 2013 the authors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The posterior inferior frontal gyrus (pIFG) and anterior inferior parietal lobule (aIPL) form the core regions of the human “mirror neuron system” that matches an observed movement onto its internal motor representation. We used event-related functional MRI to examine whether simple intransitive finger movements evoke “mirror activity” in the pIFG and aIPL. In separate sessions, participants either merely observed visuospatial stimuli or responded to them as quickly as possible with a spatially compatible finger movement. A picture of a relaxed hand with static dots on the tip of the index and little finger was continuously presented as high-level baseline. Four types of stimuli were presented in a pseudorandom order: a color change of a dot, a moving finger, a moving dot, or a simultaneous finger-dot movement. Dot movements were spatially and kinematically matched to finger movements. Participants were faster at imitating a finger movement than performing the same movement in response to a moving dot or a color change of a dot. Though imitative responses were facilitated, fMRI revealed no additional “mirror activity” in the pIFG and aIPL during the observation or imitation of finger movements as opposed to observing or responding to a moving dot. Mere observation of a finger movement alone failed to induce significant activation of the pIFG and aIPL. The lack of a signature of “mirror neuron activity” in the inferior frontoparietal cortex is presumably due to specific features of the task which may have favored stimulus–response mapping based on common spatial coding. We propose that the responsiveness of human frontoparietal mirror neuron areas to simple intransitive movements critically depends on the experimental context.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Because of attentional limitations, the human visual system can process for awareness and response only a fraction of the input received. Lesion and functional imaging studies have identified frontal, temporal, and parietal areas as playing a major role in the attentional control of visual processing, but very little is known about how these areas interact to form a dynamic attentional network. We hypothesized that the network communicates by means of neural phase synchronization, and we used magnetoencephalography to study transient long-range interarea phase coupling in a well studied attentionally taxing dual-target task (attentional blink). Our results reveal that communication within the fronto-parieto-temporal attentional network proceeds via transient long-range phase synchronization in the beta band. Changes in synchronization reflect changes in the attentional demands of the task and are directly related to behavioral performance. Thus, we show how attentional limitations arise from the way in which the subsystems of the attentional network interact. The human brain faces an inestimable task of reducing a potentially overloading amount of input into a manageable flow of information that reflects both the current needs of the organism and the external demands placed on it. This task is accomplished via a ubiquitous construct known as “attention,” whose mechanism, although well characterized behaviorally, is far from understood at the neurophysiological level. Whereas attempts to identify particular neural structures involved in the operation of attention have met with considerable success (1-5) and have resulted in the identification of frontal, parietal, and temporal regions, far less is known about the interaction among these structures in a way that can account for the task-dependent successes and failures of attention. The goal of the present research was, thus, to unravel the means by which the subsystems making up the human attentional network communicate and to relate the temporal dynamics of their communication to observed attentional limitations in humans. A prime candidate for communication among distributed systems in the human brain is neural synchronization (for review, see ref. 6). Indeed, a number of studies provide converging evidence that long-range interarea communication is related to synchronized oscillatory activity (refs. 7-14; for review, see ref. 15). To determine whether neural synchronization plays a role in attentional control, we placed humans in an attentionally demanding task and used magnetoencephalography (MEG) to track interarea communication by means of neural synchronization. In particular, we presented 10 healthy subjects with two visual target letters embedded in streams of 13 distractor letters, appearing at a rate of seven per second. The targets were separated in time by a single distractor. This condition leads to the “attentional blink” (AB), a well studied dual-task phenomenon showing the reduced ability to report the second of two targets when an interval <500 ms separates them (16-18). Importantly, the AB does not prevent perceptual processing of missed target stimuli but only their conscious report (19), demonstrating the attentional nature of this effect and making it a good candidate for the purpose of our investigation. Although numerous studies have investigated factors, e.g., stimulus and timing parameters, that manipulate the magnitude of a particular AB outcome, few have sought to characterize the neural state under which “standard” AB parameters produce an inability to report the second target on some trials but not others. We hypothesized that the different attentional states leading to different behavioral outcomes (second target reported correctly or not) are characterized by specific patterns of transient long-range synchronization between brain areas involved in target processing. Showing the hypothesized correspondence between states of neural synchronization and human behavior in an attentional task entails two demonstrations. First, it needs to be demonstrated that cortical areas that are suspected to be involved in visual-attention tasks, and the AB in particular, interact by means of neural synchronization. This demonstration is particularly important because previous brain-imaging studies (e.g., ref. 5) only showed that the respective areas are active within a rather large time window in the same task and not that they are concurrently active and actually create an interactive network. Second, it needs to be demonstrated that the pattern of neural synchronization is sensitive to the behavioral outcome; specifically, the ability to correctly identify the second of two rapidly succeeding visual targets

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: Mobile phones (MP) are used extensively and yet little is known about the effects they may have on human physiology. There have been conflicting reports regarding the relation between MP use and the electroencephalogram (EEG). The present study suggests that this conflict may be due to methodological differences such as exposure durations, and tests whether exposure to an active MP affects EEG as a function of time. METHODS: Twenty-four subjects participated in a single-blind fully counterbalanced cross-over design, where both resting EEG and phase-locked neural responses to auditory stimuli were measured while a MP was either operating or turned off. RESULTS: MP exposure altered resting EEG, decreasing 1-4 Hz activity (right hemisphere sites), and increasing 8-12 Hz activity as a function of exposure duration (midline posterior sites). MP exposure also altered early phase-locked neural responses, attenuating the normal response decrement over time in the 4-8 Hz band, decreasing the response in the 1230 Hz band globally and as a function of time, and increasing midline frontal and lateral posterior responses in the 30-45 Hz band. CONCLUSIONS: Active MPs affect neural function in humans and do so as a function of exposure duration. The temporal nature of this effect may contribute to the lack of consistent results reported in the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tests of postural stability have provided some evidence of a link between deficits in gross motor skills and developmental dyslexia. The ordinal-level scales used previously, however, have limited measurement sensitivity, and no studies have investigated motor performance during walking in participants with dyslexia. The purpose of this study was to investigate if continuous-scaled measures of standing balance and gait could discriminate between groups of impaired and normal readers when investigators were blind to group membership during testing. Children with dyslexia (n=22) and controls (n=18), aged 10-12 years, performed walking tests at four different speeds (slow-preferred-fast-very fast) on an even and an uneven surface, and tests of unperturbed and perturbed body sway during standing. Body movements were registered by a triaxial accelerometer over the lower trunk, and measures of reaction time, body sway, walking speed, step length and cadence were calculated. Results were controlled for gender differences. Tests of standing balance with eyes closed did not discriminate between groups. All unperturbed standing tests with eyes open showed significant group differences (P<0.05) and classified correctly 70-77.5% of the subjects into their respective groups. Mean walking speed during very fast walking on both flat and uneven surface was ≥0.2 m/s (P≤0.01) faster for controls than for the group with dyslexia. This test classified 77.5% and 85% of the subjects correctly on flat and uneven surface, respectively Cadence at preferred or very fast speed did not differ statistically between groups, but revealed significant group differences when all subjects were compared at a normalised walking speed (P≤0.04). Very fast walking speed as well as cadence at a normalised speed discriminated better between groups when subjects were walking on an uneven surface compared to a flat floor. Continuous-scaled walking tests performed in field settings may be suitable for motor skill assessment as a component of a screening tool for developmental dyslexia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction. Peroxiredoxin (PRDX) and thioredoxin (TRX) are antioxidant proteins that control cellular signalling and redox balance, although their response to exercise is unknown. This study aimed to assess key aspects of the PRDX-TRX redox cycle in response to three different modes of exercise. Methods. Healthy males (n = 10, mean ± SD: 22 ± 3 yrs) undertook three exercise trials on separate days: two steady-state cycling trials at moderate (60% VO2MAX; 27 min, MOD) and high (80% VO2MAX; 20 min, HIGH) intensities, and a low-volume high-intensity interval training trial (10 × 1 min 90% VO2MAX, LV-HIIT). Peripheral blood mononuclear cells were assessed for TRX-1 and over-oxidised PRDX (isoforms I-IV) protein expression before, during, and 30 min following exercise (post + 30). The activities of TRX reductase (TRX-R) and the nuclear factor kappa B (NF-κB) p65 subunit were also assessed. Results. TRX-1 increased during exercise in all trials (MOD, + 84.5%; HIGH, + 64.1%; LV-HIIT, + 205.7%; p < 05), whereas over-oxidised PRDX increased during HIGH only (MOD, - 28.7%; HIGH, + 202.9%; LV-HIIT, - 22.7%; p < .05). TRX-R and NF-κB p65 activity increased during exercise in all trials, with the greatest response in TRX-R activity seen in HIGH (p < 0.05). Discussion. All trials stimulated a transient increase in TRX-1 protein expression during exercise. Only HIGH induced a transient over-oxidation of PRDX, alongside the greatest change in TRX-R activity. Future studies are needed to clarify the significance of heightened peroxide exposure during continuous high-intensity exercise and the mechanisms of PRDX-regulatory control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anterior segment optical coherent tomography (AS-OCT, Visante; Zeiss) is used to examine meridional variation in anterior scleral thickness (AST) and its association with refractive error, ethnicity and gender. Scleral cross-sections of 74 individuals (28 males; 46 females; aged between 18-40 years (27.7±5.3)) were sampled twice in random order in 8 meridians: [superior (S), inferior (I), nasal (N), temporal (T), superior-temporal (ST), superior-nasal (SN), inferior-temporal (IT) and inferior-nasal (IN)]. AST was measured in 1mm anterior-toposterior increments (designated the A-P distance) from the scleral spur (SS) over a 6mm distance. Axial length and refractive error were measured with a Zeiss IOLMaster biometer and an open-view binocular Shin-Nippon autorefractor. Intra- And inter-observer variability of AST was assessed for each of the 8 meridians. Mixed repeated measures ANOVAs tested meridional and A-P distance differences in AST with refractive error, gender and ethnicity. Only right eye data were analysed. AST (mean±SD) across all meridians and A-P distances was 725±46μm. Meridian SN was the thinnest (662±57μm) and I the thickest (806 ±60μm). Significant differences were found between all meridians (p<0.001), except S:ST, IT:IN, IT:N and IN:N. Significant differences between A-P distances were found except between SS and 6 mm and between 2 and 4mm. AST measurements at 1mm (682±48 μm) were the thinnest and at 6mm (818±49 μm) the thickest (p<0.001); a significant interaction occurred between meridians and A-P distances (p<0.001). AST was significantly greater (p<0.001) in male subjects but no significant differences were found between refractive error or ethnicity. Significant variations in AST occur with regard to meridian and distance from the SS and may have utility in selecting optimum sites for pharmaceutical or surgical intervention.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study measures the increase in serum carotenoid concentration in 30 healthy individuals after supplementation with a low dose xanthophyll ester (3 and 6 mg of lutein equivalent/per day) when compared to a placebo. Serum levels of carotenoids were measured using HPLC and showed an increase in the concentration of lutein, zeaxanthin and four lutein metabolites proportional to dose. In order to further assess the importance of the end-group structure in carotenoids we have investigated the influence of the end-group type and functionality on the conformational energy barrier. We used the density functional method implemented on GAUSSIAN 98 to calculate the conformational energy curves for rotation of the P-ring or the E-ring relative to short polyene chains around the C6-C7 single bond. A large barrier is observed for the interconversion of conformers in the E-rings (8 kcal/mol) when compared to beta rings (2.3-3 kcal/mol).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Enterotoxigenic Escherichia coli (ETEC) is a globally prevalent cause of diarrhea. Though usually self-limited, it can be severe and debilitating. Little is known about the host transcriptional response to infection. We report the first gene expression analysis of the human host response to experimental challenge with ETEC. METHODS: We challenged 30 healthy adults with an unattenuated ETEC strain, and collected serial blood samples shortly after inoculation and daily for 8 days. We performed gene expression analysis on whole peripheral blood RNA samples from subjects in whom severe symptoms developed (n = 6) and a subset of those who remained asymptomatic (n = 6) despite shedding. RESULTS: Compared with baseline, symptomatic subjects demonstrated significantly different expression of 406 genes highlighting increased immune response and decreased protein synthesis. Compared with asymptomatic subjects, symptomatic subjects differentially expressed 254 genes primarily associated with immune response. This comparison also revealed 29 genes differentially expressed between groups at baseline, suggesting innate resilience to infection. Drug repositioning analysis identified several drug classes with potential utility in augmenting immune response or mitigating symptoms. CONCLUSIONS: There are statistically significant and biologically plausible differences in host gene expression induced by ETEC infection. Differential baseline expression of some genes may indicate resilience to infection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The global socioeconomic importance of helminth parasitic disease is underpinned by the considerable clinical impact on millions of people. While helminth polyparasitism is considered common in the Philippines, little has been done to survey its extent in endemic communities. High morphological similarity of eggs between related species complicates conventional microscopic diagnostic methods which are known to lack sensitivity, particularly in low intensity infections. Multiplex quantitative PCR diagnostic methods can provide rapid, simultaneous identification of multiple helminth species from a single stool sample. We describe a multiplex assay for the differentiation of Ascaris lumbricoides, Necator americanus, Ancylostoma, Taenia saginata and Taenia solium, building on our previously published findings for Schistosoma japonicum. Of 545 human faecal samples examined, 46.6% were positive for at least three different parasite species. High prevalences of S. japonicum (90.64%), A. lumbricoides (58.17%), T. saginata (42.57%) and A. duodenale (48.07%) were recorded. Neither T. solium nor N. americanus were found to be present. The utility of molecular diagnostic methods for monitoring helminth parasite prevalence provides new information on the extent of polyparasitism in the Philippines municipality of Palapag. These methods and findings have potential global implications for the monitoring of neglected tropical diseases and control measures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Efficiency represents the ratio of work done to energy expended. In human movement, it is desirable to maximise the work done or minimise the energy expenditure. Whilst research has examined the efficiency of human movement for the lower and upper body, there is a paucity of research which considers the efficiency of a total body movement. Rowing is a movement which encompasses all parts of the body to generate locomotion and is a useful modality to measure total body efficiency. It was the aim of this research to develop a total body model of efficiency and explore how skill level of participants and assumptions of the modelling process affected the efficiency estimates Three studies were used to develop and evaluate the efficiency model. Firstly, the efficiency of ten healthy males was established using rowing, cycling and arm cranking. The model included internal work from motion capture and efficiency estimates were comparable to published literature, indicating the suitability of the model to estimate efficiency. Secondly, the model was developed to include a multi-segmented trunk and twelve novice and twelve skilled participants were assessed for efficiency. Whilst the efficiency estimates were similar to published results, novice participants were assessed as more efficient. Issues such as the unique physiology of trained rowers and a lack of energy transfers in the model were considered contributing factors. Finally the model was redeveloped to account for energy transfers, where skilled participants had higher efficiency at large workloads. This work presents a novel model for estimating efficiency during a rowing motion. The specific inclusion of energy transfers expands previous knowledge of internal work and efficiency, demonstrating a need to include energy transfers in the assessment of efficiency of a total body action.