932 resultados para GIS BASED PLANNING TOOLS


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Planning and sustainable management of water resources require actions that focuses on life quality, recovery and preservation of natural resources. As such, a municipality must have tools which empower the government with the right to exercise such actions, for example, the Master Plan and Sector Plans. To develop municipal plans which will guide the development of the city and provide information for establishment of public policies, it is of the utmost importance that they are designed based on primary and safe data. In view of these considerations, this study aimed at formulating environmental indicators by using a Geographic Information System – GIS. The environmental diagnosis based on the gvGIS was used as database, which made the process to be agile and accurate. The watershed of Lençóis River – SP was the study area. It has a good database from the Environmental Diagnosis of the watershed of Lençóis River, which was created through funds from the State Funds for Water Resources – FEHIDRO. The borrower was the Service of Water Supply and Sewage of Lençóis Paulista – SAAELP. Based on the diagnosis, the indicators were formulated concerning land use and occupation as well as water resources. The results were considered satisfactory and showed that the methodology used in this study is of great importance to evaluate water resources, as it provides a reliable basis for the decision-making process seeking environmental compliance and sustainable development. By using environmental indicators, the sustainability of an area as a whole can be analyzed, and the parts as well, i.e., it is possible to identify which sector is experiencing significant problems and take actions to solve them.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Given the similar interests of United Way organizations and universities in planning, implementation, and evaluation of human services, the two social institutions could be extensively and effectively partnering with one another. However, there is little documentation that such cooperative efforts are taking place. This article describes one such collaboration in Lincoln, Nebraska. The purpose of the article is to show the potential of such collaboration to improve community-wide coordination and outcomes by following the principles of a community-engagement model, to generate more effective use of evaluative tools that can assist in developing evidence-based practices in community planning, and to connect areas of study within the university to United Way efforts.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The installation of induction distributed generators should be preceded by a careful study in order to determine if the point of common coupling is suitable for transmission of the generated power, keeping acceptable power quality and system stability. In this sense, this paper presents a simple analytical formulation that allows a fast and comprehensive evaluation of the maximum power delivered by the induction generator, without losing voltage stability. Moreover, this formulation can be used to identify voltage stability issues that limit the generator output power. All the formulation is developed by using the equivalent circuit of squirrel-cage induction machine. Simulation results are used to validate the method, which enables the approach to be used as a guide to reduce the simulation efforts necessary to assess the maximum output power and voltage stability of induction generators. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work is supported by Brazilian agencies Fapesp, CAPES and CNPq

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Although Recovery is often defined as the less studied and documented phase of the Emergency Management Cycle, a wide literature is available for describing characteristics and sub-phases of this process. Previous works do not allow to gain an overall perspective because of a lack of systematic consistent monitoring of recovery utilizing advanced technologies such as remote sensing and GIS technologies. Taking into consideration the key role of Remote Sensing in Response and Damage Assessment, this thesis is aimed to verify the appropriateness of such advanced monitoring techniques to detect recovery advancements over time, with close attention to the main characteristics of the study event: Hurricane Katrina storm surge. Based on multi-source, multi-sensor and multi-temporal data, the post-Katrina recovery was analysed using both a qualitative and a quantitative approach. The first phase was dedicated to the investigation of the relation between urban types, damage and recovery state, referring to geographical and technological parameters. Damage and recovery scales were proposed to review critical observations on remarkable surge- induced effects on various typologies of structures, analyzed at a per-building level. This wide-ranging investigation allowed a new understanding of the distinctive features of the recovery process. A quantitative analysis was employed to develop methodological procedures suited to recognize and monitor distribution, timing and characteristics of recovery activities in the study area. Promising results, gained by applying supervised classification algorithms to detect localization and distribution of blue tarp, have proved that this methodology may help the analyst in the detection and monitoring of recovery activities in areas that have been affected by medium damage. The study found that Mahalanobis Distance was the classifier which provided the most accurate results, in localising blue roofs with 93.7% of blue roof classified correctly and a producer accuracy of 70%. It was seen to be the classifier least sensitive to spectral signature alteration. The application of the dissimilarity textural classification to satellite imagery has demonstrated the suitability of this technique for the detection of debris distribution and for the monitoring of demolition and reconstruction activities in the study area. Linking these geographically extensive techniques with expert per-building interpretation of advanced-technology ground surveys provides a multi-faceted view of the physical recovery process. Remote sensing and GIS technologies combined to advanced ground survey approach provides extremely valuable capability in Recovery activities monitoring and may constitute a technical basis to lead aid organization and local government in the Recovery management.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis deals with Visual Servoing and its strictly connected disciplines like projective geometry, image processing, robotics and non-linear control. More specifically the work addresses the problem to control a robotic manipulator through one of the largely used Visual Servoing techniques: the Image Based Visual Servoing (IBVS). In Image Based Visual Servoing the robot is driven by on-line performing a feedback control loop that is closed directly in the 2D space of the camera sensor. The work considers the case of a monocular system with the only camera mounted on the robot end effector (eye in hand configuration). Through IBVS the system can be positioned with respect to a 3D fixed target by minimizing the differences between its initial view and its goal view, corresponding respectively to the initial and the goal system configurations: the robot Cartesian Motion is thus generated only by means of visual informations. However, the execution of a positioning control task by IBVS is not straightforward because singularity problems may occur and local minima may be reached where the reached image is very close to the target one but the 3D positioning task is far from being fulfilled: this happens in particular for large camera displacements, when the the initial and the goal target views are noticeably different. To overcame singularity and local minima drawbacks, maintaining the good properties of IBVS robustness with respect to modeling and camera calibration errors, an opportune image path planning can be exploited. This work deals with the problem of generating opportune image plane trajectories for tracked points of the servoing control scheme (a trajectory is made of a path plus a time law). The generated image plane paths must be feasible i.e. they must be compliant with rigid body motion of the camera with respect to the object so as to avoid image jacobian singularities and local minima problems. In addition, the image planned trajectories must generate camera velocity screws which are smooth and within the allowed bounds of the robot. We will show that a scaled 3D motion planning algorithm can be devised in order to generate feasible image plane trajectories. Since the paths in the image are off-line generated it is also possible to tune the planning parameters so as to maintain the target inside the camera field of view even if, in some unfortunate cases, the feature target points would leave the camera images due to 3D robot motions. To test the validity of the proposed approach some both experiments and simulations results have been reported taking also into account the influence of noise in the path planning strategy. The experiments have been realized with a 6DOF anthropomorphic manipulator with a fire-wire camera installed on its end effector: the results demonstrate the good performances and the feasibility of the proposed approach.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Research in fundamental physics with the free neutron is one of the key tools for testing the Standard Model at low energies. Most prominent goals in this field are the search for a neutron electric dipole moment (EDM) and the measurement of the neutron lifetime. Significant improvements of the experimental performance using ultracold neutrons (UCN) require reduction of both systematic and statistical errors.rnThe development and construction of new UCN sources based on the superthermal concept is therefore an important step for the success of future fundamental physics with ultracold neutrons. rnSignificant enhancement of today available UCN densities strongly correlates with an efficient use of an UCN converter material. The UCN converter here is to be understood as a medium which reduces the velocity of cold neutrons (CN, velocity of about 600 m/s) to the velocity of UCN (velocity of about 6 m/s).rnSeveral big research centers around the world are presently planning or constructing new superthermal UCN sources, which are mainly based on the use of either solid deuterium or superfluid helium as UCN converter.rnThanks to the idea of Yu.Pokotilovsky, there exists the opportunity to build competitive UCN sources also at small research reactors of the TRIGA type. Of course these smaller facilities don't promise high UCN densities of several 1000 UCN/cm³, but they are able to provide densities around 100 UCN/cm³ for experiments.rnIn the context of this thesis, it was possible to demonstrate succesfully the feasibility of a superthermal UCN source at the tangential beamport C of the research reactor TRIGA Mainz. Based on a prototype for the future UCN source at the Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRMII) in munich, which was planned and built in collaboration with the Technical University of Munich, further investigations and improvements were done and are presented in this thesis. rnIn parallel, a second UCN source for the radial beamport D was designed and built. The comissioning of this new source is foreseen in spring 2010.rnAt beamport D with its higher thermal neutron flux, it should be possible to increase the available UCN densities of 4 UCN/cm³ by minimum one order of magnitude.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

As lipofilling of the female breast is becoming more popular in plastic surgery, the use of MRI to assess breast volume has been employed to control postoperative results. Therefore, we sought to evaluate the accuracy of magnetic resonance imaging (MRI)-based breast volumetry software tools by comparing the measurements of silicone implant augmented breasts with the actual implant volume specified by the manufacturer. MRI-based volume analysis was performed in eight bilaterally augmented patients (46 ± 9 years) with three different software programs (Brainlab© I plan 2.6 neuronavigation software; mass analysis, version 5.3, Medis©; and OsiriX© v.3.0.2. 32-bit). The implant volumes analysed by the BrainLab© software had a mean deviation of 2.2 ± 1.7% (r?=?0.99) relative to the implanted prosthesis. OsiriX© software analysis resulted in a mean deviation of 2.8 ± 3.0% (r?=?0.99) and the Medis© software had a mean deviation of 3.1 ± 3.0% (r?=?0.99). Overall, the volumes of all analysed breast implants correlated very well with the real implant volumes. Processing time was 10 min per breast with each system and 30 s (OsiriX©) to 5 min (BrainLab© and Medis©) per silicone implant. MRI-based volumetry is a powerful tool to calculate both native breast and silicone implant volume in situ. All software solutions performed well and the measurements were close to the actual implant sizes. The use of MRI breast volumetry may be helpful in: (1) planning reconstructive and aesthetic surgery of asymmetric breasts, (2) calculating implant size in patients with missing documentation of a previously implanted device and (3) assessing post-operative results objectively.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recently developed computer applications provide tools for planning cranio-maxillofacial interventions based on 3-dimensional (3D) virtual models of the patient's skull obtained from computed-tomography (CT) scans. Precise knowledge of the location of the mid-facial plane is important for the assessment of deformities and for planning reconstructive procedures. In this work, a new method is presented to automatically compute the mid-facial plane on the basis of a surface model of the facial skeleton obtained from CT. The method matches homologous surface areas selected by the user on the left and right facial side using an iterative closest point optimization. The symmetry plane which best approximates this matching transformation is then computed. This new automatic method was evaluated in an experimental study. The study included experienced and inexperienced clinicians defining the symmetry plane by a selection of landmarks. This manual definition was systematically compared with the definition resulting from the new automatic method: Quality of the symmetry planes was evaluated by their ability to match homologous areas of the face. Results show that the new automatic method is reliable and leads to significantly higher accuracy than the manual method when performed by inexperienced clinicians. In addition, the method performs equally well in difficult trauma situations, where key landmarks are unreliable or absent.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this project we developed conductive thermoplastic resins by adding varying amounts of three different carbon fillers: carbon black (CB), synthetic graphite (SG) and multi-walled carbon nanotubes (CNT) to a polypropylene matrix for application as fuel cell bipolar plates. This component of fuel cells provides mechanical support to the stack, circulates the gases that participate in the electrochemical reaction within the fuel cell and allows for removal of the excess heat from the system. The materials fabricated in this work were tested to determine their mechanical and thermal properties. These materials were produced by adding varying amounts of single carbon fillers to a polypropylene matrix (2.5 to 15 wt.% Ketjenblack EC-600 JD carbon black, 10 to 80 wt.% Asbury Carbon's Thermocarb TC-300 synthetic graphite, and 2.5 to 15 wt.% of Hyperion Catalysis International's FIBRILTM multi-walled carbon nanotubes) In addition, composite materials containing combinations of these three fillers were produced. The thermal conductivity results showed an increase in both through-plane and in-plane thermal conductivities, with the largest increase observed for synthetic graphite. The Department of Energy (DOE) had previously set a thermal conductivity goal of 20 W/m·K, which was surpassed by formulations containing 75 wt.% and 80 wt.% SG, yielding in-plane thermal conductivity values of 24.4 W/m·K and 33.6 W/m·K, respectively. In addition, composites containing 2.5 wt.% CB, 65 wt.% SG, and 6 wt.% CNT in PP had an in–plane thermal conductivity of 37 W/m·K. Flexural and tensile tests were conducted. All composite formulations exceeded the flexural strength target of 25 MPa set by DOE. The tensile and flexural modulus of the composites increased with higher concentration of carbon fillers. Carbon black and synthetic graphite caused a decrease in the tensile and flexural strengths of the composites. However, carbon nanotubes increased the composite tensile and flexural strengths. Mathematical models were applied to estimate through-plane and in-plane thermal conductivities of single and multiple filler formulations, and tensile modulus of single-filler formulations. For thermal conductivity, Nielsen's model yielded accurate thermal conductivity values when compared to experimental results obtained through the Flash method. For prediction of tensile modulus Nielsen's model yielded the smallest error between the predicted and experimental values. The second part of this project consisted of the development of a curriculum in Fuel Cell and Hydrogen Technologies to address different educational barriers identified by the Department of Energy. By the creation of new courses and enterprise programs in the areas of fuel cells and the use of hydrogen as an energy carrier, we introduced engineering students to the new technologies, policies and challenges present with this alternative energy. Feedback provided by students participating in these courses and enterprise programs indicate positive acceptance of the different educational tools. Results obtained from a survey applied to students after participating in these courses showed an increase in the knowledge and awareness of energy fundamentals, which indicates the modules developed in this project are effective in introducing students to alternative energy sources.