999 resultados para GEWALD REACTION
Resumo:
The products of the Henry nitroaldol reaction from nitromethane and several aldehydes were reduced to the corresponding nitroalkanes with (n-Bu)(3)SnH in water under microwave irradiation (80 degrees C/10 min), or dehydrated to the corresponding nitroalkenes with K2CO3 in water (generally 0-5 degrees C/20 min). Both ``one-pot'' reactions occur in excellent yields across a range of aliphatic and aromatic (including heteroaromatic) substrates. It seems likely that the deoxygenation of the nitroaldols occurs via coordination of an oxygen atom of the nitro group with a tin atom, which facilitates hydride delivery in the transition state. The elimination of water from the nitroaldols in mild base is likely driven by the stability of the conjugated nitroalkene products. The elimination required workup with 2N HCl, which likely displaces a nitroalkane-nitroalkene equilibrium towards the latter. These extensions of the Henry reaction lead to products not easily obtained otherwise.
Resumo:
Silver nanoparticles-anchored reduced graphene oxide (Ag-RGO) is prepared by simultaneous reduction of graphene oxide and Ag+ ions in an aqueous medium by ethylene glycol as the reducing agent. Ag particles of average size of 4.7 nm were uniformly distributed on the RGO sheets. Oxygen reduction reaction (ORR) is studied on Ag-RGO catalyst in both aqueous and non-aqueous electrolytes by using cyclic voltammetry and rotating disk electrode techniques. As the interest in non-aqueous electrolyte is to study the catalytic performance of Ag-RGO for rechargeable Li-O-2 cells, these cells are assembled and characterized. Li-O-2 cells with Ag-RGO as the oxygen electrode catalyst are subjected to charge-discharge cycling at several current densities. A discharge capacity of 11 950 mA h g(-1) (11.29 mA h cm(-2)) is obtained initially at low current density. Although there is a decrease in the capacity on repeated discharge-charge cycling initially, a stable capacity is observed for about 30 cycles. The results indicate that Ag-RGO is a suitable catalyst for rechargeable Li-O-2 cells.
Resumo:
The first organocatalytic asymmetric reaction of 3-isothiocyanatooxindoles with nitro olefins has been developed by using a cinchonidine-derived bifunctional catalyst. The resulting products, highly functionalized 3,2-pyrrolidinyl-substituted spirooxindole derivatives, were obtained in high yields with good diastereo- and enantioselectivities (up to dr >20:1 and er = 96:4). This Michael addition/cyclization cascade reaction employs monosubstituted nitro olefins and complements the Zn-II-catalyzed variant, which is only applicable to disubstituted nitro olefins.
Resumo:
In this article, we study the problem of determining an appropriate grading of meshes for a system of coupled singularly perturbed reaction-diffusion problems having diffusion parameters with different magnitudes. The central difference scheme is used to discretize the problem on adaptively generated mesh where the mesh equation is derived using an equidistribution principle. An a priori monitor function is obtained from the error estimate. A suitable a posteriori analogue of this monitor function is also derived for the mesh construction which will lead to an optimal second-order parameter uniform convergence. We present the results of numerical experiments for linear and semilinear reaction-diffusion systems to support the effectiveness of our preferred monitor function obtained from theoretical analysis. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
Synthesis of size selective monodispersed nanoparticles particularly intermetallic with well-defined compositions represents a challenge. This paper presents a way for the synthesis of intermetallic AuCu nanoparticles as a model system. We show that reduction of Au and Cu precursors is sensitive to the ratio of total molar concentrations of surfactant to metal precursors. A careful design of experiments to understand the kinetics of the reduction process reveals initial formation of seed nanoparticles of pure Au. Reduction of Cu occurs on the surface of the seed followed by diffusion to yield AuCu. This understanding allows us to develop a two step synthesis where the precise size controlled seed of Au nanoparticles produced in the first step is used in the second step reaction mixture as an Au precursor to allow deposition and interdiffusion of Cu that yields size selected AuCu intermetallics of sub 10 nm sizes.
Resumo:
Here, we demonstrate an uninterrupted galvanic replacement reaction (GRR) for the synthesis of metallic (Ag, Cu and Sn) and bimetallic (Cu M, M=Ag, Au, Pt and Pd) sponges/dendrites by sacrificing the low reduction potential metals (Mg in our case) in acidic medium. The acidic medium prevents the oxide formation on Mg surface and facilitates the uninterrupted reaction. The morphology of dendritic/spongy structures is controlled by the volume of acid used for this reaction. The growth mechanism of the spongy/dendritic microstructures is explained by diffusion-limited aggregate model (DLA), which is also largely affected by the volume of acid. The significance of this method is that the yield can be easily predicted, which is a major challenge for the commercialization of the products. Furthermore, the synthesis is complete in 1-2 minutes at room temperature. We show that the sponges/dendrites efficiently act as catalysts to reduce 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) using NaBH4-a widely studied conversion process.
Resumo:
Si nanowire growth on sapphire substrates by the vapor-liquid-solid (VLS) method using Au catalyst particles has been studied. Sapphire was chosen as the substrate to ensure that the vapor phase is the only source of Si. Three hitherto unreported observations are described. First, an incubation period of 120-480 s, which is shown to be the incubation period as defined in classical nucleation theory, is reported. This incubation period permits the determination of a desolvation energy of Si from Au-Si alloys of 15 kT. Two, transmission electron microscopy studies of incubation, point to Si loss by reverse reaction as an important part of the mechanism of Si nanowire growth by VLS. Three, calculations using these physico-chemical parameters determined from incubation and measured steady state growth rates of Si nanowires show that wire growth happens from a supersaturated catalyst droplet. (C) 2015 AIP Publishing LLC.
Resumo:
A convenient and efficient one-pot synthesis of benzofurans 3a, 3b, 3c, 3d, 3e, 3f, 3g, 3h, 3i, 3j, 3k, 3l, 3m, 3n, 3o, 3p, 3q, 3r, 3s, 3t has been described from 2-hydroxy acetophenones and phenacyl chlorides in the presence of DBU. The procedure was applicable for a variety of phenacyl chlorides and provides a variety of benzofurans with higher yields. DBU acts as a base and as well as nucleophiles. All the derivatives were subjected to in vitro antioxidant screenings against representative 2,2-diphenyl-1-picryl-hydrazyl and 2,2-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) radicals and results worth for further investigations.
Resumo:
A plausible microkinetic model has been proposed for the CO oxidation reaction catalysed by palladium (Pd) with the kinetic parameters obtained from the literature. A robust rate expression using the reaction route analysis has been developed for the presented microkinetic scheme and the obtained rate expressions have been validated against the experimental data presented in the literature. A wide range of experimental conditions ranging from single Pd crystals under ultra-high vacuum conditions and impregnated Pd used for fixed bed experiments under atmospheric pressure has been used to validate the reaction mechanism. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Temperature dependent reaction products are observed when borohydride is present in aqueous solutions containing Ir3+. At temperatures of 40 degrees C and above, metallic iridium is formed while under ambient conditions of 25 degrees C, borohydride results in an alkaline environment that helps in hydrolyzing the precursor to form IrO2. The Ir foams and IrO2 are subsequently used to study their catalytic properties.
Resumo:
A facile methodology for synthesizing Au-Cu2S hybrid nanoparticles is presented. Au-Cu2S nanoparticles have application in visible light driven photocatalytic degradation of dyes. Detailed microstructural and compositional characterization illustrated that the hybrid nanoparticles are composed of cube shaped Au-Cu solid solution and hemispherical shaped Cu2S phases. Investigation of nanoparticles extracted at different stages of the synthesis process revealed that the mechanism of formation of hybrid nanoparticles involved initial formation of isolated cube shaped pure Au nanoparticles and Cu-thiolate complex. In the subsequent stages, the Au nanoparticles get adsorbed onto the Cu-thiolate complex which is followed by the decomposition of the Cu-thiolate complex to form Au-Cu2S hybrid nanoparticles. This study also illustrates that an optimum concentration of dodecanethiol is required both for achieving size and morphological uniformity of the participating phases and for their attachment to form a hybrid nanoparticle.
Resumo:
Large-scale production of hydrogen gas by water electrolysis is hindered by the sluggish kinetics of oxygen evolution reaction (OER) at the anode. The development of a highly active and stable catalyst for OER is a challenging task. Electrochemically prepared amorphous metal-based catalysts have gained wide attention after the recent discovery of a cnbalt-phosphate (Co-Pi) catalyst: Herein, an amorphous iridium-phosphate (Ir-Pi) is investigated as an oxygen evolution catalyst. The catalyst is prepared by the anodic polarization of carbon paper electrodes in neutral phosphate buffer solutions containing IrCl3. The Ir-Pi film deposited on the substrate has significant amounts of phosphate and It centers in an oxidation state higher than +4. Phosphate plays a significant role in the deposition of the catalyst and also in its activity toward OER. The onset potential of OER on the Ir-Pi is about 150 mV lower in comparison with the Co-Pi under identical experimental conditions. Thus, Ir-Pi is a promising catalyst for electrochemical oxidation of water.
Resumo:
The production of H-2 via photocatalytic water splitting reaction has attracted a great attention as a clean and renewable energy for next generation. Despite tremendous efforts, the present challenge for materials scientist is to develop highly active photo catalysts for splitting of water at low cost. This article reports the synthesis of TiO2-reduced graphene oxide hybrid nanomaterials through ionothermal method using functionalized ionic liquid for the enhanced hydrogen generation via water splitting reaction. The structural and morphological properties of the samples were investigated by XFtD, Raman spectroscopy, TG-DTA, UV-vis spectroscopy and TEM. A substantial increase of H-2 evolution was observed for TiO2-reduced graphene oxide hybrid nanomaterials. This is due to the high migration efficiency of photo-induced electrons and the inhibition of charge carrier recombination due to the electronic interaction between TiO2 and reduced graphene oxide. i.e, reduced graphene oxide acts as an electron-acceptor which effectively hinders the electron hole pair recombination of TiO2. Copyright (C) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Resumo:
A new monoclinic polymorph, form II (P2(1)/c, Z = 4), has been isolated for 3,4-dimethoxycinnamic acid (DMCA). Its solid-state 2 + 2 photoreaction to the corresponding alpha-truxillic acid is different from that of the first polymorph, the triclinic form I (P (1) over bar, Z = 4) that was reported in 1984. The crystal structures of the two forms are rather different. The two polymorphs also exhibit different photomechanical properties. Form I exhibits photosalient behavior but this effect is absent in form II. These properties can be explained on the basis of the crystal packing in the two forms. The nanoindentation technique is used to shed further insights into these structure-property relationships. A faster photoreaction in form I and a higher yield in form II are rationalized on the basis of the mechanical properties of the individual crystal forms. It is suggested that both Schmidt-type and Kaupp-type topochemistry are applicable for the solid-state trans-cinnamic acid photodimerization reaction. Form I of DMCA is more plastic and seems to react under Kaupp-type conditions with maximum molecular movements. Form II is more brittle, and its interlocked structure seems to favor Schmidt-type topochemistry with minimum molecular movement.
Resumo:
Tetrabutyl ammonium iodide (TBAI) catalyzed alpha-aminoxylation of ketones using aq. TBHP as an oxidant has been accomplished. We have shown that the CDC (cross dehydrogenative coupling) reactions of ketones with N-hydroxyimidates such as N-hydroxysuccinimide (NHSI), N-hydroxyphthalimide (NHPI), N-hydroxybenzotriazole (HOBt) and 1-hydroxy-7-azabenzotriazole (HOAt) lead to the corresponding oxygenated products in good to moderate yields. The application of this method has been demonstrated by transforming a few coupled products into synthetically useful intermediates and products.