806 resultados para Fuzzy Clustering


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a prototype of a fuzzy system for alleviation of network overloads in the day-to-day operation of power systems. The control used for overload alleviation is real power generation rescheduling. Generation Shift Sensitivity Factors (GSSF) are computed accurately, using a more realistic operational load flow model. Overloading of lines and sensitivity of controlling variables are translated into fuzzy set notations to formulate the relation between overloading of line and controlling ability of generation scheduling. A fuzzy rule based system is formed to select the controllers, their movement direction and step size. Overall sensitivity of line loading to each of the generation is also considered in selecting the controller. Results obtained for network overload alleviation of two modified Indian power networks of 24 bus and 82 bus with line outage contingencies are presented for illustration purposes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Emerging high-dimensional data mining applications needs to find interesting clusters embeded in arbitrarily aligned subspaces of lower dimensionality. It is difficult to cluster high-dimensional data objects, when they are sparse and skewed. Updations are quite common in dynamic databases and they are usually processed in batch mode. In very large dynamic databases, it is necessary to perform incremental cluster analysis only to the updations. We present a incremental clustering algorithm for subspace clustering in very high dimensions, which handles both insertion and deletions of datapoints to the backend databases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over past few years, the studies of cultured neuronal networks have opened up avenues for understanding the ion channels, receptor molecules, and synaptic plasticity that may form the basis of learning and memory. The hippocampal neurons from rats are dissociated and cultured on a surface containing a grid of 64 electrodes. The signals from these 64 electrodes are acquired using a fast data acquisition system MED64 (Alpha MED Sciences, Japan) at a sampling rate of 20 K samples with a precision of 16-bits per sample. A few minutes of acquired data runs in to a few hundreds of Mega Bytes. The data processing for the neural analysis is highly compute-intensive because the volume of data is huge. The major processing requirements are noise removal, pattern recovery, pattern matching, clustering and so on. In order to interface a neuronal colony to a physical world, these computations need to be performed in real-time. A single processor such as a desk top computer may not be adequate to meet this computational requirements. Parallel computing is a method used to satisfy the real-time computational requirements of a neuronal system that interacts with an external world while increasing the flexibility and scalability of the application. In this work, we developed a parallel neuronal system using a multi-node Digital Signal processing system. With 8 processors, the system is able to compute and map incoming signals segmented over a period of 200 ms in to an action in a trained cluster system in real time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Support Vector Clustering has gained reasonable attention from the researchers in exploratory data analysis due to firm theoretical foundation in statistical learning theory. Hard Partitioning of the data set achieved by support vector clustering may not be acceptable in real world scenarios. Rough Support Vector Clustering is an extension of Support Vector Clustering to attain a soft partitioning of the data set. But the Quadratic Programming Problem involved in Rough Support Vector Clustering makes it computationally expensive to handle large datasets. In this paper, we propose Rough Core Vector Clustering algorithm which is a computationally efficient realization of Rough Support Vector Clustering. Here Rough Support Vector Clustering problem is formulated using an approximate Minimum Enclosing Ball problem and is solved using an approximate Minimum Enclosing Ball finding algorithm. Experiments done with several Large Multi class datasets such as Forest cover type, and other Multi class datasets taken from LIBSVM page shows that the proposed strategy is efficient, finds meaningful soft cluster abstractions which provide a superior generalization performance than the SVM classifier.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Applications in various domains often lead to very large and frequently high-dimensional data. Successful algorithms must avoid the curse of dimensionality but at the same time should be computationally efficient. Finding useful patterns in large datasets has attracted considerable interest recently. The primary goal of the paper is to implement an efficient Hybrid Tree based clustering method based on CF-Tree and KD-Tree, and combine the clustering methods with KNN-Classification. The implementation of the algorithm involves many issues like good accuracy, less space and less time. We will evaluate the time and space efficiency, data input order sensitivity, and clustering quality through several experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a novel Second Order Cone Programming (SOCP) formulation for large scale binary classification tasks. Assuming that the class conditional densities are mixture distributions, where each component of the mixture has a spherical covariance, the second order statistics of the components can be estimated efficiently using clustering algorithms like BIRCH. For each cluster, the second order moments are used to derive a second order cone constraint via a Chebyshev-Cantelli inequality. This constraint ensures that any data point in the cluster is classified correctly with a high probability. This leads to a large margin SOCP formulation whose size depends on the number of clusters rather than the number of training data points. Hence, the proposed formulation scales well for large datasets when compared to the state-of-the-art classifiers, Support Vector Machines (SVMs). Experiments on real world and synthetic datasets show that the proposed algorithm outperforms SVM solvers in terms of training time and achieves similar accuracies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fuzzy multiobjective programming for a deterministic case involves maximizing the minimum goal satisfaction level among conflicting goals of different stakeholders using Max-min approach. Uncertainty due to randomness in a fuzzy multiobjective programming may be addressed by modifying the constraints using probabilistic inequality (e.g., Chebyshev’s inequality) or by addition of new constraints using statistical moments (e.g., skewness). Such modifications may result in the reduction of the optimal value of the system performance. In the present study, a methodology is developed to allow some violation in the newly added and modified constraints, and then minimizing the violation of those constraints with the objective of maximizing the minimum goal satisfaction level. Fuzzy goal programming is used to solve the multiobjective model. The proposed methodology is demonstrated with an application in the field of Waste Load Allocation (WLA) in a river system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prediction of variable bit rate compressed video traffic is critical to dynamic allocation of resources in a network. In this paper, we propose a technique for preprocessing the dataset used for training a video traffic predictor. The technique involves identifying the noisy instances in the data using a fuzzy inference system. We focus on three prediction techniques, namely, linear regression, neural network and support vector regression and analyze their performance on H.264 video traces. Our experimental results reveal that data preprocessing greatly improves the performance of linear regression and neural network, but is not effective on support vector regression.