880 resultados para Forecasting and replenishment (CPFR)
Resumo:
The first ECMWF Seminar in 1975 (ECMWF, 1975) considered the scientific foundation of medium range weather forecasts. It may be of interest as a part of this lecture, to review some of the ideas and opinions expressed during this seminar.
Resumo:
The Normal Quantile Transform (NQT) has been used in many hydrological and meteorological applications in order to make the Cumulated Distribution Function (CDF) of the observed, simulated and forecast river discharge, water level or precipitation data Gaussian. It is also the heart of the meta-Gaussian model for assessing the total predictive uncertainty of the Hydrological Uncertainty Processor (HUP) developed by Krzysztofowicz. In the field of geo-statistics this transformation is better known as the Normal-Score Transform. In this paper some possible problems caused by small sample sizes when applying the NQT in flood forecasting systems will be discussed and a novel way to solve the problem will be outlined by combining extreme value analysis and non-parametric regression methods. The method will be illustrated by examples of hydrological stream-flow forecasts.
Resumo:
Following trends in operational weather forecasting, where ensemble prediction systems (EPS) are now increasingly the norm, flood forecasters are beginning to experiment with using similar ensemble methods. Most of the effort to date has focused on the substantial technical challenges of developing coupled rainfall-runoff systems to represent the full cascade of uncertainties involved in predicting future flooding. As a consequence much less attention has been given to the communication and eventual use of EPS flood forecasts. Drawing on interviews and other research with operational flood forecasters from across Europe, this paper highlights a number of challenges to communicating and using ensemble flood forecasts operationally. It is shown that operational flood forecasters understand the skill, operational limitations, and informational value of EPS products in a variety of different and sometimes contradictory ways. Despite the efforts of forecasting agencies to design effective ways to communicate EPS forecasts to non-experts, operational flood forecasters were often skeptical about the ability of forecast recipients to understand or use them appropriately. It is argued that better training and closer contacts between operational flood forecasters and EPS system designers can help ensure the uncertainty represented by EPS forecasts is represented in ways that are most appropriate and meaningful for their intended consumers, but some fundamental political and institutional challenges to using ensembles, such as differing attitudes to false alarms and to responsibility for management of blame in the event of poor or mistaken forecasts are also highlighted. Copyright © 2010 Royal Meteorological Society.
Resumo:
Although difference-stationary (DS) and trend-stationary (TS) processes have been subject to considerable analysis, there are no direct comparisons for each being the data-generation process (DGP). We examine incorrect choice between these models for forecasting for both known and estimated parameters. Three sets of Monte Carlo simulations illustrate the analysis, to evaluate the biases in conventional standard errors when each model is mis-specified, compute the relative mean-square forecast errors of the two models for both DGPs, and investigate autocorrelated errors, so both models can better approximate the converse DGP. The outcomes are surprisingly different from established results.
Resumo:
We compare linear autoregressive (AR) models and self-exciting threshold autoregressive (SETAR) models in terms of their point forecast performance, and their ability to characterize the uncertainty surrounding those forecasts, i.e. interval or density forecasts. A two-regime SETAR process is used as the data-generating process in an extensive set of Monte Carlo simulations, and we consider the discriminatory power of recently developed methods of forecast evaluation for different degrees of non-linearity. We find that the interval and density evaluation methods are unlikely to show the linear model to be deficient on samples of the size typical for macroeconomic data
Resumo:
In this paper we discuss the current state-of-the-art in estimating, evaluating, and selecting among non-linear forecasting models for economic and financial time series. We review theoretical and empirical issues, including predictive density, interval and point evaluation and model selection, loss functions, data-mining, and aggregation. In addition, we argue that although the evidence in favor of constructing forecasts using non-linear models is rather sparse, there is reason to be optimistic. However, much remains to be done. Finally, we outline a variety of topics for future research, and discuss a number of areas which have received considerable attention in the recent literature, but where many questions remain.
Resumo:
Vintage-based vector autoregressive models of a single macroeconomic variable are shown to be a useful vehicle for obtaining forecasts of different maturities of future and past observations, including estimates of post-revision values. The forecasting performance of models which include information on annual revisions is superior to that of models which only include the first two data releases. However, the empirical results indicate that a model which reflects the seasonal nature of data releases more closely does not offer much improvement over an unrestricted vintage-based model which includes three rounds of annual revisions.
Resumo:
We examine how the accuracy of real-time forecasts from models that include autoregressive terms can be improved by estimating the models on ‘lightly revised’ data instead of using data from the latest-available vintage. The benefits of estimating autoregressive models on lightly revised data are related to the nature of the data revision process and the underlying process for the true values. Empirically, we find improvements in root mean square forecasting error of 2–4% when forecasting output growth and inflation with univariate models, and of 8% with multivariate models. We show that multiple-vintage models, which explicitly model data revisions, require large estimation samples to deliver competitive forecasts. Copyright © 2012 John Wiley & Sons, Ltd.
Resumo:
This paper proposes and implements a new methodology for forecasting time series, based on bicorrelations and cross-bicorrelations. It is shown that the forecasting technique arises as a natural extension of, and as a complement to, existing univariate and multivariate non-linearity tests. The formulations are essentially modified autoregressive or vector autoregressive models respectively, which can be estimated using ordinary least squares. The techniques are applied to a set of high-frequency exchange rate returns, and their out-of-sample forecasting performance is compared to that of other time series models
Resumo:
Flash floods pose a significant danger for life and property. Unfortunately, in arid and semiarid environment the runoff generation shows a complex non-linear behavior with a strong spatial and temporal non-uniformity. As a result, the predictions made by physically-based simulations in semiarid areas are subject to great uncertainty, and a failure in the predictive behavior of existing models is common. Thus better descriptions of physical processes at the watershed scale need to be incorporated into the hydrological model structures. For example, terrain relief has been systematically considered static in flood modelling at the watershed scale. Here, we show that the integrated effect of small distributed relief variations originated through concurrent hydrological processes within a storm event was significant on the watershed scale hydrograph. We model these observations by introducing dynamic formulations of two relief-related parameters at diverse scales: maximum depression storage, and roughness coefficient in channels. In the final (a posteriori) model structure these parameters are allowed to be both time-constant or time-varying. The case under study is a convective storm in a semiarid Mediterranean watershed with ephemeral channels and high agricultural pressures (the Rambla del Albujón watershed; 556 km 2 ), which showed a complex multi-peak response. First, to obtain quasi-sensible simulations in the (a priori) model with time-constant relief-related parameters, a spatially distributed parameterization was strictly required. Second, a generalized likelihood uncertainty estimation (GLUE) inference applied to the improved model structure, and conditioned to observed nested hydrographs, showed that accounting for dynamic relief-related parameters led to improved simulations. The discussion is finally broadened by considering the use of the calibrated model both to analyze the sensitivity of the watershed to storm motion and to attempt the flood forecasting of a stratiform event with highly different behavior.