865 resultados para Filmic approach methods
Resumo:
This paper presents a novel algebraic formulation of the central problem of screw theory, namely the determination of the principal screws of a given system. Using the algebra of dual numbers, it shows that the principal screws can be determined via the solution of a generalised eigenproblem of two real, symmetric matrices. This approach allows the study of the principal screws of the general two-, three-systems associated with a manipulator of arbitrary geometry in terms of closed-form expressions of its architecture and configuration parameters. We also present novel methods for the determination of the principal screws for four-, five-systems which do not require the explicit computation of the reciprocal systems. Principal screws of the systems of different orders are identified from one uniform criterion, namely that the pitches of the principal screws are the extreme values of the pitch.The classical results of screw theory, namely the equations for the cylindroid and the pitch-hyperboloid associated with the two-and three-systems, respectively have been derived within the proposed framework. Algebraic conditions have been derived for some of the special screw systems. The formulation is also illustrated with several examples including two spatial manipulators of serial and parallel architecture, respectively.
Resumo:
We consider estimating the total load from frequent flow data but less frequent concentration data. There are numerous load estimation methods available, some of which are captured in various online tools. However, most estimators are subject to large biases statistically, and their associated uncertainties are often not reported. This makes interpretation difficult and the estimation of trends or determination of optimal sampling regimes impossible to assess. In this paper, we first propose two indices for measuring the extent of sampling bias, and then provide steps for obtaining reliable load estimates that minimizes the biases and makes use of informative predictive variables. The key step to this approach is in the development of an appropriate predictive model for concentration. This is achieved using a generalized rating-curve approach with additional predictors that capture unique features in the flow data, such as the concept of the first flush, the location of the event on the hydrograph (e.g. rise or fall) and the discounted flow. The latter may be thought of as a measure of constituent exhaustion occurring during flood events. Forming this additional information can significantly improve the predictability of concentration, and ultimately the precision with which the pollutant load is estimated. We also provide a measure of the standard error of the load estimate which incorporates model, spatial and/or temporal errors. This method also has the capacity to incorporate measurement error incurred through the sampling of flow. We illustrate this approach for two rivers delivering to the Great Barrier Reef, Queensland, Australia. One is a data set from the Burdekin River, and consists of the total suspended sediment (TSS) and nitrogen oxide (NO(x)) and gauged flow for 1997. The other dataset is from the Tully River, for the period of July 2000 to June 2008. For NO(x) Burdekin, the new estimates are very similar to the ratio estimates even when there is no relationship between the concentration and the flow. However, for the Tully dataset, by incorporating the additional predictive variables namely the discounted flow and flow phases (rising or recessing), we substantially improved the model fit, and thus the certainty with which the load is estimated.
Resumo:
We consider rank regression for clustered data analysis and investigate the induced smoothing method for obtaining the asymptotic covariance matrices of the parameter estimators. We prove that the induced estimating functions are asymptotically unbiased and the resulting estimators are strongly consistent and asymptotically normal. The induced smoothing approach provides an effective way for obtaining asymptotic covariance matrices for between- and within-cluster estimators and for a combined estimator to take account of within-cluster correlations. We also carry out extensive simulation studies to assess the performance of different estimators. The proposed methodology is substantially Much faster in computation and more stable in numerical results than the existing methods. We apply the proposed methodology to a dataset from a randomized clinical trial.
Resumo:
There are numerous load estimation methods available, some of which are captured in various online tools. However, most estimators are subject to large biases statistically, and their associated uncertainties are often not reported. This makes interpretation difficult and the estimation of trends or determination of optimal sampling regimes impossible to assess. In this paper, we first propose two indices for measuring the extent of sampling bias, and then provide steps for obtaining reliable load estimates by minimizing the biases and making use of possible predictive variables. The load estimation procedure can be summarized by the following four steps: - (i) output the flow rates at regular time intervals (e.g. 10 minutes) using a time series model that captures all the peak flows; - (ii) output the predicted flow rates as in (i) at the concentration sampling times, if the corresponding flow rates are not collected; - (iii) establish a predictive model for the concentration data, which incorporates all possible predictor variables and output the predicted concentrations at the regular time intervals as in (i), and; - (iv) obtain the sum of all the products of the predicted flow and the predicted concentration over the regular time intervals to represent an estimate of the load. The key step to this approach is in the development of an appropriate predictive model for concentration. This is achieved using a generalized regression (rating-curve) approach with additional predictors that capture unique features in the flow data, namely the concept of the first flush, the location of the event on the hydrograph (e.g. rise or fall) and cumulative discounted flow. The latter may be thought of as a measure of constituent exhaustion occurring during flood events. The model also has the capacity to accommodate autocorrelation in model errors which are the result of intensive sampling during floods. Incorporating this additional information can significantly improve the predictability of concentration, and ultimately the precision with which the pollutant load is estimated. We also provide a measure of the standard error of the load estimate which incorporates model, spatial and/or temporal errors. This method also has the capacity to incorporate measurement error incurred through the sampling of flow. We illustrate this approach using the concentrations of total suspended sediment (TSS) and nitrogen oxide (NOx) and gauged flow data from the Burdekin River, a catchment delivering to the Great Barrier Reef. The sampling biases for NOx concentrations range from 2 to 10 times indicating severe biases. As we expect, the traditional average and extrapolation methods produce much higher estimates than those when bias in sampling is taken into account.
Resumo:
Quasi-likelihood (QL) methods are often used to account for overdispersion in categorical data. This paper proposes a new way of constructing a QL function that stems from the conditional mean-variance relationship. Unlike traditional QL approaches to categorical data, this QL function is, in general, not a scaled version of the ordinary log-likelihood function. A simulation study is carried out to examine the performance of the proposed QL method. Fish mortality data from quantal response experiments are used for illustration.
Resumo:
During the past few decades, developing efficient methods to solve dynamic facility layout problems has been focused on significantly by practitioners and researchers. More specifically meta-heuristic algorithms, especially genetic algorithm, have been proven to be increasingly helpful to generate sub-optimal solutions for large-scale dynamic facility layout problems. Nevertheless, the uncertainty of the manufacturing factors in addition to the scale of the layout problem calls for a mixed genetic algorithm–robust approach that could provide a single unlimited layout design. The present research aims to devise a customized permutation-based robust genetic algorithm in dynamic manufacturing environments that is expected to be generating a unique robust layout for all the manufacturing periods. The numerical outcomes of the proposed robust genetic algorithm indicate significant cost improvements compared to the conventional genetic algorithm methods and a selective number of other heuristic and meta-heuristic techniques.
Resumo:
This paper reports on the fourth stage of an evolving study to develop a systems model for embedding education for sustainability (EfS) into pre-service teacher education. The fourth stage trialled the extension of the model to a comprehensive state-wide systems approach involving representatives from all eight Queensland teacher education institutions and other key policy agencies and professional associations. Support for trialling the model included regular meetings among the participating representatives and an implementation guide. This paper describes the first three stages of developing and trialling the model before presenting the case study and action research methods employed, four key lessons learned from the project, and the implications of the major outcomes for teacher education policies and practices. The Queensland-wide multi-site case study revealed processes and strategies that can enable institutional change agents to engage productively in building capacity for embedding EfS at the individual, institutional and state levels in pre-service teacher education. Collectively, the project components provide a system-wide framework that offers strategies, examples, insights and resources that can serve as a model for other states and/or territories wishing to implement EfS in a systematic and coherent fashion.
Resumo:
An urgent need exists for indicators of soil health and patch functionality in extensive rangelands that can be measured efficiently and at low cost. Soil mites are candidate indicators, but their identification and handling is so specialised and time-consuming that their inclusion in routine monitoring is unlikely. The aim of this study was to measure the relationship between patch type and mite assemblages using a conventional approach. An additional aim was to determine if a molecular approach traditionally used for soil microbes could be adapted for soil mites to overcome some of the bottlenecks associated with soil fauna diversity assessment. Soil mite species abundance and diversity were measured using conventional ecological methods in soil from patches with perennial grass and litter cover (PGL), and compared to soil from bare patches with annual grasses and/or litter cover (BAL). Soil mite assemblages were also assessed using a molecular method called terminal-restriction fragment length polymorphism (T-RFLP) analysis. The conventional data showed a relationship between patch type and mite assemblage. The Prostigmata and Oribatida were well represented in the PGL sites, particularly the Aphelacaridae (Oribatida). For T-RFLP analysis, the mite community was represented by a series of DNA fragment lengths that reflected mite sequence diversity. The T-RFLP data showed a distinct difference in the mite assemblage between the patch types. Where possible, T-RFLP peaks were matched to mite families using a reference 18S rDNA database, and the Aphelacaridae prevalent in the conventional samples at PGL sites were identified, as were prostigmatids and oribatids. We identified limits to the T-RFLP approach and this included an inability to distinguish some species whose DNA sequences were similar. Despite these limitations, the data still showed a clear difference between sites, and the molecular taxonomic inferences also compared well with the conventional ecological data. The results from this study indicated that the T-RFLP approach was effective in measuring mite assemblages in this system. The power of this technique lies in the fact that species diversity and abundance data can be obtained quickly because of the time taken to process hundreds of samples, from soil DNA extraction to data output on the gene analyser, can be as little as 4 days.
Resumo:
Between-subject and within-subject variability is ubiquitous in biology and physiology and understanding and dealing with this is one of the biggest challenges in medicine. At the same time it is difficult to investigate this variability by experiments alone. A recent modelling and simulation approach, known as population of models (POM), allows this exploration to take place by building a mathematical model consisting of multiple parameter sets calibrated against experimental data. However, finding such sets within a high-dimensional parameter space of complex electrophysiological models is computationally challenging. By placing the POM approach within a statistical framework, we develop a novel and efficient algorithm based on sequential Monte Carlo (SMC). We compare the SMC approach with Latin hypercube sampling (LHS), a method commonly adopted in the literature for obtaining the POM, in terms of efficiency and output variability in the presence of a drug block through an in-depth investigation via the Beeler-Reuter cardiac electrophysiological model. We show improved efficiency via SMC and that it produces similar responses to LHS when making out-of-sample predictions in the presence of a simulated drug block.
Resumo:
This case-study examines innovative experimentation with mobile and cloud-based technologies, utilising “Guerrilla Research Tactics” (GRT), as a means of covertly retrieving data from the urban fabric. Originally triggered by participatory action research (Kindon et al., 2008) and unobtrusive research methods (Kellehear, 1993), the potential for GRT lies in its innate ability to offer researchers an alternative, creative approach to data acquisition, whilst simultaneously allowing them to engage with the public, who are active co-creators of knowledge. Key characteristics are political agenda, the unexpected and the unconventional, which allow for an interactive, unique and thought-provoking experience for both researcher and participant.
Resumo:
Light interception is a major factor influencing plant development and biomass production. Several methods have been proposed to determine this variable, but its calculation remains difficult in artificial environments with heterogeneous light. We propose a method that uses 3D virtual plant modelling and directional light characterisation to estimate light interception in highly heterogeneous light environments such as growth chambers and glasshouses. Intercepted light was estimated by coupling an architectural model and a light model for different genotypes of the rosette species Arabidopsis thaliana (L.) Heynh and a sunflower crop. The model was applied to plants of contrasting architectures, cultivated in isolation or in canopy, in natural or artificial environments, and under contrasting light conditions. The model gave satisfactory results when compared with observed data and enabled calculation of light interception in situations where direct measurements or classical methods were inefficient, such as young crops, isolated plants or artificial conditions. Furthermore, the model revealed that A. thaliana increased its light interception efficiency when shaded. To conclude, the method can be used to calculate intercepted light at organ, plant and plot levels, in natural and artificial environments, and should be useful in the investigation of genotype-environment interactions for plant architecture and light interception efficiency. This paper originates from a presentation at the 5th International Workshop on Functional–Structural Plant Models, Napier, New Zealand, November 2007.
Resumo:
Non-stationary signal modeling is a well addressed problem in the literature. Many methods have been proposed to model non-stationary signals such as time varying linear prediction and AM-FM modeling, the later being more popular. Estimation techniques to determine the AM-FM components of narrow-band signal, such as Hilbert transform, DESA1, DESA2, auditory processing approach, ZC approach, etc., are prevalent but their robustness to noise is not clearly addressed in the literature. This is critical for most practical applications, such as in communications. We explore the robustness of different AM-FM estimators in the presence of white Gaussian noise. Also, we have proposed three new methods for IF estimation based on non-uniform samples of the signal and multi-resolution analysis. Experimental results show that ZC based methods give better results than the popular methods such as DESA in clean condition as well as noisy condition.
Resumo:
While the method using specialist herbivores in managing invasive plants (classical biological control) is regarded as relatively safe and cost-effective in comparison to other methods of management, the rarity of strict monophagy among insect herbivores illustrates that, like any management option, biological control is not risk-free. The challenge for classical biological control is therefore to predict risks and benefits a priori. In this study we develop a simulation model that may aid in this process. We use this model to predict the risks and benefits of introducing the chrysomelid beetle Charidotis auroguttata to manage the invasive liana Macfadyena unguis-cati in Australia. Preliminary host-specificity testing of this herbivore indicated that there was limited feeding on a non-target plant, although the non-target was only able to sustain some transitions of the life cycle of the herbivore. The model includes herbivore, target and non-target life history and incorporates spillover dynamics of populations of this herbivore from the target to the non-target under a variety of scenarios. Data from studies of this herbivore in the native range and under quarantine were used to parameterize the model and predict the relative risks and benefits of this herbivore when the target and non-target plants co-occur. Key model outputs include population dynamics on target (apparent benefit) and non-target (apparent risk) and fitness consequences to the target (actual benefit) and non-target plant (actual risk) of herbivore damage. The model predicted that risk to the non-target became unacceptable (i.e. significant negative effects on fitness) when the ratio of target to non-target in a given patch ranged from 1:1 to 3:2. By comparing the current known distribution of the non-target and the predicted distribution of the target we were able to identify regions in Australia where the agent may be pose an unacceptable risk. By considering risk and benefit simultaneously, we highlight how such a simulation modelling approach can assist scientists and regulators in making more objective decisions a priori, on the value of releasing specialist herbivores as biological control agents.
Resumo:
A diagnostic system for ECG rhythm monitoring based on syntactic approaches to pattern recognition is presented here. The method proposed exploits the difference in shape and structure between arrhythmic and normal ECG patterns to generate distinctly different descriptions in terms of a chosen set of primitives. A given frame of signal is first approximated piecewise linearly into a set of line segments which are completely specified in terms of their length and slope values. The slope values are quantized into seven distinct levels and a unit-length line segment with a slope value in each of these levels is coded as a slope symbol. Seven such slope symbols constitute the set of primitives. The given signal is represented as a string of such symbols based on the length and angle of the line segments approximating the signal. Context-free languages are used for describing the classes of abnormal and normal ECG patterns considered here. Analysis of actual ECG data shows efficiency comparable with that of existing methods and a saving in processing time.
Resumo:
Red blood cells (RBCs) are the most common type of blood cells in the blood and 99% of the blood cells are RBCs. During the circulation of blood in the cardiovascular network, RBCs squeeze through the tiny blood vessels (capillaries). They exhibit various types of motions and deformed shapes, when flowing through these capillaries with diameters varying between 5 10 µm. RBCs occupy about 45 % of the whole blood volume and the interaction between the RBCs directly influences on the motion and the deformation of the RBCs. However, most of the previous numerical studies have explored the motion and deformation of a single RBC when the interaction between RBCs has been neglected. In this study, motion and deformation of two 2D (two-dimensional) RBCs in capillaries are comprehensively explored using a coupled smoothed particle hydrodynamics (SPH) and discrete element method (DEM) model. In order to clearly model the interactions between RBCs, only two RBCs are considered in this study even though blood with RBCs is continuously flowing through the blood vessels. A spring network based on the DEM is employed to model the viscoelastic membrane of the RBC while the inside and outside fluid of RBC is modelled by SPH. The effect of the initial distance between two RBCs, membrane bending stiffness (Kb) of one RBC and undeformed diameter of one RBC on the motion and deformation of both RBCs in a uniform capillary is studied. Finally, the deformation behavior of two RBCs in a stenosed capillary is also examined. Simulation results reveal that the interaction between RBCs has significant influence on their motion and deformation.