775 resultados para Fallow Deer


Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION: The Neuromodulation Appropriateness Consensus Committee (NACC) of the International Neuromodulation Society (INS) evaluated evidence regarding the safety and efficacy of neurostimulation to treat chronic pain, chronic critical limb ischemia, and refractory angina and recommended appropriate clinical applications. METHODS: The NACC used literature reviews, expert opinion, clinical experience, and individual research. Authors consulted the Practice Parameters for the Use of Spinal Cord Stimulation in the Treatment of Neuropathic Pain (2006), systematic reviews (1984 to 2013), and prospective and randomized controlled trials (2005 to 2013) identified through PubMed, EMBASE, and Google Scholar. RESULTS: Neurostimulation is relatively safe because of its minimally invasive and reversible characteristics. Comparison with medical management is difficult, as patients considered for neurostimulation have failed conservative management. Unlike alternative therapies, neurostimulation is not associated with medication-related side effects and has enduring effect. Device-related complications are not uncommon; however, the incidence is becoming less frequent as technology progresses and surgical skills improve. Randomized controlled studies support the efficacy of spinal cord stimulation in treating failed back surgery syndrome and complex regional pain syndrome. Similar studies of neurostimulation for peripheral neuropathic pain, postamputation pain, postherpetic neuralgia, and other causes of nerve injury are needed. International guidelines recommend spinal cord stimulation to treat refractory angina; other indications, such as congestive heart failure, are being investigated. CONCLUSIONS: Appropriate neurostimulation is safe and effective in some chronic pain conditions. Technological refinements and clinical evidence will continue to expand its use. The NACC seeks to facilitate the efficacy and safety of neurostimulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Flies (Diptera, blow flies, house flies, flesh flies, horse flies, cattle flies, deer flies, midges and mosquitoes) are among the four megadiverse insect orders. Several species quickly colonize human cadavers and are potentially useful in forensic studies. One of the major problems with carrion fly identification is the lack of taxonomists or available keys that can identify even the most common species sometimes resulting in erroneous identification. Here we present a key to the adults of 12 families of Diptera whose species are found on carrion, including human corpses. Also, a summary for the most common families of forensic importance in South America, along with a key to the most common species of Calliphoridae, Muscidae, and Fanniidae and to the genera of Sarcophagidae are provided. Drawings of the most important characters for identification are also included.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biological aspects of Leucothyreus alvarengai Frey and Leucothyreus aff. semipruinosus Ohaus (Coleoptera, Melolonthidae, Rutelinae) in crop succession at central Brazil. Beetles of the family Melolonthidae make up a large group and some species are considered pests of planted crops. Little information is available on the basic biological aspects of the genus Leucothyreus, such as association with cultivated crops and their occurrence periods. Therefore studies were developed in soybean and corn crops in Tangará da Serra, Mato Grosso, Brazil, with the objective of studying the occurrence and biological aspects of Leucothyreus alvarengai Frey and Leucothyreus aff. semipruinosus Ohaus. For acquisition of immature specimens of both species, in April 2011 sampling was performed in corn fields, in July and October in the fallow area, and in soybeans fields planted in December; in 2012 sampling was performed in January and February in soybean fields and in March in corn fields. In 2011 the total number of larvae obtained in April, July, October and December were 100, 6, 30 and 27, and in January, February and March of 2012 these quantities were 32, 52 and 65 larvae, respectively. In all sampling events the larvae of L. alvarengai were collected in greater quantity. At the beginning of the reproductive period of L. alvarengai and L. aff. semipruinosus, it was observed that the adults began to fly and soon after started oviposition in the field in September. The appearance of larvae coincides with the time of soybean planting in the field, thus the larvae feed on roots of soybean plants at the beginning of their development and the cycle from egg to adult of the two species was completed in one year.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Site-specific regression coefficient values are essential for erosion prediction with empirical models. With the objective to investigate the surface-soilconsolidation factor, Cf, linked to the RUSLE's prior-land-use subfactor, PLU, an erosion experiment using simulated rainfall on a 0.075 m m-1 slope, sandy loam Paleudult soil, was conducted at the Agriculture Experimental Station of the Federal University of Rio Grande do Sul (EEA/UFRGS), in Eldorado do Sul, State of Rio Grande do Sul, Brazil. Firstly, a row-cropped area was excluded from cultivation (March 1995), the existing crop residue removed from the field, and the soil kept clean-tilled the rest of the year (to get a degraded soil condition for the intended purpose of this research). The soil was then conventional-tilled for the last time (except for a standard plot which was kept continuously cleantilled for comparison purposes), in January 1996, and the following treatments were established and evaluated for soil reconsolidation and soil erosion until May 1998, on duplicated 3.5 x 11.0 m erosion plots: (a) fresh-tilled soil, continuously in clean-tilled fallow (unit plot); (b) reconsolidating soil without cultivation; and (c) reconsolidating soil with cultivation (a crop sequence of three corn- and two black oats cycles, continuously in no-till, removing the crop residues after each harvest for rainfall application and redistributing them on the site after that). Simulated rainfall was applied with a Swanson's type, rotating-boom rainfall simulator, at 63.5 mm h-1 intensity and 90 min duration, six times during the two-and-half years of experimental period (at the beginning of the study and after each crop harvest, with the soil in the unit plot being retilled before each rainfall test). The soil-surface-consolidation factor, Cf, was calculated by dividing soil loss values from the reconsolidating soil treatments by the average value from the fresh-tilled soil treatment (unit plot). Non-linear regression was used to fit the Cf = e b.t model through the calculated Cf-data, where t is time in days since last tillage. Values for b were -0.0020 for the reconsolidating soil without cultivation and -0.0031 for the one with cultivation, yielding Cf-values equal to 0.16 and 0.06, respectively, after two-and-half years of tillage discontinuation, compared to 1.0 for fresh-tilled soil. These estimated Cf-values correspond, respectively, to soil loss reductions of 84 and 94 %, in relation to soil loss from the fresh-tilled soil, showing that the soil surface reconsolidated intenser with cultivation than without it. Two distinct treatmentinherent soil surface conditions probably influenced the rapid decay-rate of Cf values in this study, but, as a matter of a fact, they were part of the real environmental field conditions. Cf-factor curves presented in this paper are therefore useful for predicting erosion with RUSLE, but their application is restricted to situations where both soil type and particular soil surface condition are similar to the ones investigate in this study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Los cambios en los usos del suelo han contribuido de manera importante al incremento de gases de efecto invernadero en la atmósfera, especialmente de dióxido de carbono, aumentando sus emisiones desde 1970 en un 80%. Estos cambios causan la alteración de los suelos provocando un impacto sobre el ciclo del carbono, aumentando las tasas de descomposición de la fracción orgánica creando así un flujo de CO2 a la atmosfera. Entre las recomendaciones del Panel Intergubernamental de expertos sobre el Cambio Climático (IPCC, en inglés), y contemplado en el Protocolo de Kyoto, se encuentra el proceso de secuestro de carbono en suelos, que implica la eliminación del CO2 atmosférico por parte de las plantas y su almacenamiento como materia orgánica del suelo. Para poder favorecer dicho proceso, en un determinado tipo de ecosistema, es fundamental conocer cuáles son los factores que gobiernan la respiración del suelo y el impacto que tienen los diferentes usos en la emisión de CO2. En el presente trabajo se han estudiado 4 usos del suelo representativos del secano aragonés: un monocultivo de cebada en siembra directa (NT), un suelo abandonado labrado (AC), un suelo abandonado no alterado (AU) y un suelo forestal (FR) con el objetivo de conocer sus tasas de respiración, la influencia de diferentes parámetros edáficos en ellas, y proponer cambios en el uso del suelo que ayuden a mitigar estas emisiones. Además, se ha dedicado un apartado para conocer cómo influyen diferentes técnicas de fertilización nitrogenada (mineral y orgánica) en la respiración de un monocultivo de cebada en siembra directa. En cuanto a los usos, los resultados obtenidos tanto in situ como en laboratorio muestran una mayor respiración en AC, siendo los valores más bajos los de NT y FR. Una de las principales conclusiones es que la supresión del laboreo y del periodo de barbecho largo, así como la conversión de tierras abandonadas y marginales a cultivos y zonas forestales se presentan en este tipo de ecosistemas como prácticas de secuestro de carbono. En el estudio de aplicación de fertilizantes, no se observó ningún cambio en la respiración del suelo después de la aplicación de nitrógeno mineral. En cambio, el suelo fertilizado con purín sí que mostró picos de emisión durante las siguientes horas a la incorporación de éste, debido fundamentalmente a su alto contenido de carbono lábil.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The new techniques proposed for agriculture in the Amazon region include rotational fallow systems enriched with leguminous trees and the replacement of biomass burning by mulching. Decomposition and nutrient release from mulch were studied using fine-mesh litterbags with five different leguminous species and the natural fallow vegetation as control. Samples from each treatment were analyzed for total C, N, P, K, Ca, Mg, lignin, cellulose content and soluble polyphenol at different sampling times over the course of one year. The decomposition rate constant varied with species and time. Weight loss from the decomposed litter bag material after 96 days was 30.1 % for Acacia angustissima, 32.7 % for Sclerolobium paniculatum, 33.9 % for Iinga edulis and the Fallow vegetation, 45.2 % for Acacia mangium and 63.6 % for Clitoria racemosa. Immobilization of N and P was observed in all studied treatments. Nitrogen mineralization was negatively correlated with phenol, C-to-N ratio, lignin + phenol/N ratio, and phenol/phosphorus ratios and with N content in the litterbag material. After 362 days of field incubation, an average (of all treatments), 3.3 % K, 32.2 % Ca and 22.4 % Mg remained in the mulch. Results confirm that low quality and high amount of organic C as mulch application are limiting for the quantity of energy available for microorganisms and increase the nutrient immobilization for biomass decomposition, which results in competition for nutrients with the crop plants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION: The International Neuromodulation Society (INS) has determined that there is a need for guidance regarding safety and risk reduction for implantable neurostimulation devices. The INS convened an international committee of experts in the field to explore the evidence and clinical experience regarding safety, risks, and steps to risk reduction to improve outcomes. METHODS: The Neuromodulation Appropriateness Consensus Committee (NACC) reviewed the world literature in English by searching MEDLINE, PubMed, and Google Scholar to evaluate the evidence for ways to reduce risks of neurostimulation therapies. This evidence, obtained from the relevant literature, and clinical experience obtained from the convened consensus panel were used to make final recommendations on improving safety and reducing risks. RESULTS: The NACC determined that the ability to reduce risk associated with the use of neurostimulation devices is a valuable goal and possible with best practice. The NACC has recommended several practice modifications that will lead to improved care. The NACC also sets out the minimum training standards necessary to become an implanting physician. CONCLUSIONS: The NACC has identified the possibility of improving patient care and safety through practice modification. We recommend that all implanting physicians review this guidance and consider adapting their practice accordingly.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soil is the basis underlying the food production chain and it is fundamental to improve and conserve its productive capacity. Imbalanced exploitation can degrade agricultural areas physical, chemical and biologically. The objective of this study was to evaluate some soil physical properties and their relation with organic carbon contents of a Humic Dystrudept under conventional tillage (CT) and no-tillage (NT), for 12 years in rotation (r) and succession (s) cropping systems. The experiment was carried out in Lages, SC (latitude 27 º 49 ' S and longitude 50 º 20 ' W, 937 m asl), using crop sequences of bean-fallow-maize-fallow-soybean in conventional tillage rotation; maize-fallow in conventional tillage succession; bean-oat-maize-turnip-soybean-vetch in no-tillage rotation; and maize-vetch in no-tillage succession. The experimental design was completely randomized with four replications. The soil samples were collected in the layers 0-2.5, 2.5-5, 5-10, and 10-20 cm. The following properties were analyzed: soil density, porosity, aggregate stability, degree of flocculation, water retention, infiltration, mechanical strength, and total organic carbon. Soil aggregation in the surface layer (0-5 cm) was better in the no-tillage than the conventional system, related to higher microporosity, organic carbon contents and water retention capacity, indicating that a periodical tillage of this soil is unnecessary. Infiltration was highest in no-tillage with crop succession.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cover crops may difffer in the way they affect rhizosphere microbiota nutrient dynamics. The purpose of this study was to evaluate the effect of mycorrhizal and non-mycorrhizal cover crops on soil phosphatase activity and its persistence in subsequent crops. A three-year experiment was carried out with a Typic Quartzipsamment. Treatments were winter species, either mycorrhizal black oat (Avena strigosa Schreb) or the non-mycorrhizal species oilseed radish (Raphanus sativus L. var. oleiferus Metzg) and corn spurry (Spergula arvensis L.). The control treatment consisted of resident vegetation (fallow in the winter season). In the summer, a mixture of pearl millet (Pennisetum americanum L.) with sunnhemp (Crotalaria juncea L.) or with soybean (Glycine max L.) was sown in all plots. Soil cores (0-10 cm) and root samples were collected in six growing seasons (winter and summer of each year). Microbial biomass P was determined by the fumigation-extraction method and phosphatase activity using p-nitrophenyl-phosphate as enzyme substrate. During the flowering stage of the winter cover crops, acid phosphatase activity was 30-35 % higher in soils with the non-mycorrhizal species oilseed radish, than in the control plots, regardless of the amount of P immobilized in microbial biomass. The values of enzyme activity were intermediate in the plots with corn spurry and black oat. Alkaline phosphatase activity was 10-fold lower and less sensitive to the treatments, despite the significant relationship between the two phosphatase activities. The effect of plant species on the soil enzyme profile continued in the subsequent periods, during the growth of mycorrhizal summer crops, after completion of the life cycle of the cover crops.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soil water availability to plants is affected by soil compaction and other variables. The Least Limiting Water Range (LLWR) comprises soil physical variables affecting root growth and soil water availability, and can be managed by either mechanical or biological methods. There is evidence that effects of crop rotations could last longer than chiseling, so the objective of this study was to assess the effect of soil chiseling or growing cover crops under no-till (NT) on the LLWR. Crop rotations involving triticale (X Triticosecale) and sunflower (Helianthus annuus) in the fall-winter associated with millet (Pennisetum glaucum), sorghum (Sorghum bicolor) and sunn hemp (Crotalaria juncea) as cover crops preceding soybean (Glycine max) were repeated for three consecutive years. In the treatment with chiseling (performed only in the first year), the area was left fallow between the fall-winter and summer crops. The experiment was carried out in Botucatu, São Paulo State, Brazil, from 2003 to 2006 on a Typic Rhodudalf. The LLWR was determined in soil samples taken from the layers 0-20 cm and 20- 40 cm, after chemical desiccation of the cover crops in December of the first and third year of the experiment. Chiseling decreases soil bulk density in the 0-20 cm soil layer, increasing the LLWR magnitude by lowering the soil water content at which penetration resistance reaches 2.0 MPa; this effect is present up to the third year after chiseling and can reach to a depth of 0.40 m. Crop rotations involving sunflower + sunn hemp, triticale + millet and triticale + sunn hemp for three years prevented soil bulk density from exceeding the critical soil bulk density in the 0- 0.20 m layer. This effect was observed to a depth of 0.40 m after three years of chiseling under crop rotations involving forage sorghum. Hence, chiseling and some crop rotations under no tillage are effective in increasing soil quality assessed by the LLWR.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The increase in agricultural production in the Brazilian Amazon region is mostly a result of the agricultural frontier expansion, into areas previously influenced by humans or of native vegetation. At the same time, burning is still used to clear areas in small-scale agricultural systems, leading to a loss of the soil productive capacity shortly after, forcing the opening of new areas. This study had the objective of evaluating the effect of soil preparation methods that involve plant residue shredding, left on the surface or incorporated to the soil, with or without chemical fertilization, on the soil chemical and biological properties. The experiment was conducted in 1995, in an experimental field of Yellow Latosol (Oxisol) of the Embrapa Amazônia Oriental, northeastern Pará (Brazil). The experiment was arranged in randomized blocks, in a 2x6 factorial design, with two management systems and six treatments evaluated twice. The management systems consisted of rice (Oriza sativa), followed by cowpea (Vigna unguiculata) with manioc (Manihot esculenta). In the first system the crops were planted in two consecutive cycles, followed by a three-year fallow period (natural regrowth); the second system consisted of one cultivation cycle and was left fallow for three years. The following treatments were applied to the secondary forest vegetation: slash and burn, fertilized with NPK (Q+NPK); slash and burn, without fertilizer NPK (Q-NPK); cutting and shredding, leaving the residues on the soil surface, fertilized with NPK (C+NPK); cutting and shredding, leaving residues on the soil surface, without fertilizer (C-NPK); cutting and shredding, with residue incorporation and fertilized with NPK (I+NPK); cutting and shredding, with residue incorporation and without NPK fertilizer (I-NPK). The soil was sampled in the rainier season (April 2006) and in the drier season (September 2006), in the 0-0.1 m layer. From each plot, 10 simple samples were collected in order to generate a composite sample. In the more intensive management system the contents of microbial C (Cmic) and microbial N (Nmic) were higher, while the C (Corg) level was higher in the less intensive system. The treatments with highest Cmic and Nmic levels were those with cutting, shredding and distribution of biomass on the soil surface. Under both management systems, the chemical characteristics were in ranges that classify the soil as little fertile, although P and K (in the rainy season) were higher in the less intensive management system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies have proven that the agroforestry systems in the semi-arid region of the State of Ceará, Brazil, induce an increase in soil organic C levels. Notwithstanding, there is no information if this increase also results in qualitative changes in different pools of soil organic matter. The objective of this study was to verify the possible chemical and structural alterations in fulvic and humic acids of a Luvisol in areas adopting agroforestry, traditional intensive cultivation and native forest in a long-term experiment conducted in the semi-arid region of Ceará State, Brazil. The study was conducted in an experimental area of the National Goat Research Center (Embrapa) in Sobral, CE. The following treatments were evaluated: agrosilvopasture (AGP), silvopasture (SILV), intensive cultivation under fallow (ICF), and areas with native forest (NF). Soil fulvic and humic acids fractions were extracted from the 0-6 and 6-12 cm layers and characterized by elemental composition, thermogravimetry and infrared spectroscopy analyses. The elemental composition analysis of humic acids confirmed the data found for fulvic acids, showing reduction in the C, H and N levels, followed by an increase in O contents in the AGP and ICF treatments over SILV and NF. In all treatments, except to SILV in the 0-6 cm layer, the percentage of mass loss was highest (300-600 °C) for humic acids in the thermally most stable region. Despite the similarity between infrared spectra, soil fulvic acids in the SILV treatment extracted from 6-12 cm depth decrease the absorption bands at 1708 and 1408 cm-1 followed by an increase in the absorption band at 1608 cm-1 attributed to aromatic C=C groups. This behavior suggests an increase in the aromatic character of the structure. The AGP and ICF treatments, which increase the soil tilling, favored the maintenance of humic substances with a more aromatic character in the soil than SILV and NF. The less aromatic humic substances in the SILV treatment resulted in an increase of exchange sites of soil organic matter, indicating improved nutrient cycling and maintenance of productivity in the system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cultivation of crops with different capacity of P uptake and use under long-term soil tillage systems can affect the distribution of P cycling and inorganic forms in the soil, as a result of higher or lower use efficiency of P applied in fertilizers. The purpose of this study was to evaluate the effect of long-term cultivation of different winter species under tillage systems on the distribution of inorganic P forms in the soil. In 1986, the experiment was initiated with six winter crops (blue lupin, hairy vetch, oat, oilseed radish, wheat and fallow) on a Rhodic Hapludox in southwestern Paraná, under no-tillage (NT) and conventional tillage (CT). The application of phosphate fertilizer in NT rows increased inorganic P in the labile and moderately labile forms, and soil disturbance in CT redistributed the applied P in the deeper layers, increasing the moderately labile P concentration in the subsurface layers. Black oat and blue lupin were the most efficient P-recyclers and under NT, they increased the labile P content in the soil surface layers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In view of the importance of the macroporosity for the water transport properties of soils, its quantitative assessment is a challenging task. Measurements of hydraulic conductivity (K) at different soil water tensions and the quantification of water-conducting macropores (θM) of a soil under different tillage systems could help understand the effects on the soil porous system and related hydraulic properties. The purpose of this study was to assess the effects of Conventional Tillage (CT), Chisel Plow (CP) and No Tillage (NT) on θM and on K; and to quantify the contribution of macroporosity to total water flux in a loam soil. A tension disc infiltrometer was used at two soil water pressure heads (-5 cm, and 0) to infer θM and K, during fallow. Macroporosity was determined based on the flow contribution between 0 and -5 cm water potentials (K0, K5, respectively), according to the Hagen-Poiseuille equation. The K0 values were statistically higher for CT than for NT and CP. The K5 values did not differ statistically among treatments. The mean K values varied between 0.20 and 3.70 cm/h. For CT, θM was significantly greater than for CP and NT, following the same trend as K0. No differences in θM were detected between CP and NT. With CT, the formation of water-conducting macropores with persistence until post-harvest was possible, while under CP preparation, the water-conducting macropores were not persistent. These results support the idea that tillage affects the soil water movement mainly by the resulting water-conducting macropores. Future studies on tillage effects on water movement should focus on macroporosity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of cover crops has been suggested as an effective method to maintain and/or increase the organic matter content, while maintaining and/or enhancing the soil physical, chemical and biological properties. The fertility of Cerrado soils is low and, consequently, phosphorus levels as well. Phosphorus is required at every metabolic stage of the plant, as it plays a role in the processes of protein and energy synthesis and influences the photosynthetic process. This study evaluated the influence of cover crops and phosphorus rates on soil chemical and biological properties after two consecutive years of common bean. The study analyzed an Oxisol in Selvíria (Mato Grosso do Sul, Brazil), in a randomized block, split plot design, in a total of 24 treatments with three replications. The plot treatments consisted of cover crops (millet, pigeon pea, crotalaria, velvet bean, millet + pigeon pea, millet + crotalaria, and millet + velvet bean) and one plot was left fallow. The subplots were represented by phosphorus rates applied as monoammonium phosphate (0, 60 and 90 kg ha-1 P2O5). In August 2011, the soil chemical properties were evaluated (pH, organic matter, phosphorus, potential acidity, cation exchange capacity, and base saturation) as well as biological variables (carbon of released CO2, microbial carbon, metabolic quotient and microbial quotient). After two years of cover crops in rotation with common bean, the cover crop biomass had not altered the soil chemical properties and barely influenced the microbial activity. The biomass production of millet and crotalaria (monoculture or intercropped) was highest. The biological variables were sensitive and responded to increasing phosphorus rates with increases in microbial carbon and reduction of the metabolic quotient.