939 resultados para FUNCTIONAL EXPRESSION


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We studied the alpha-olefin selectivity in Fischer-Tropsch (FT) synthesis using density functional theory (131717) calculations. We calculated the relevant elementary steps from C-2 to C-6 species. Our results showed that the barriers of hydrogenation and dehydrogenation reactions were constant with different chain lengths, and the chemisorption energies of alpha-olefins from DFT calculations also were very similar, except for C-2 species. A simple expression of the paraffin/olefin ratio was obtained based on a kinetic model. Combining the expression of the paraffin/olefin ratio and our calculation results, experimental findings are satisfactorily explained. We found that the physical origin of the chain length dependence of paraffin/olefin ratio is the chain length dependence of both the van der Waals interaction between adsorbed alpha-olefins and metal surfaces and the entropy difference between adsorbed and gaseous alpha-olefins, and that the greater chemisorption energy of ethylene is the main reason for the abnormal ethane/ethylene ratio. (c) 2008 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Haem oxygenase-1 (HO-1) is a cytoprotective molecule that is reported to have a protective role in a variety of experimental models of renal injury. A functional dinucleotide repeat (GT)n polymorphism, within the HO-1 promoter, regulates HO-1 gene expression; a short number of repeats (S-allele <25) increases transcription. We report the first assessment of the role of this HO-1 gene promoter polymorphism in chronic kidney disease due to autosomal dominant polycystic kidney disease (ADPKD) and IgA nephropathy (IgAN).

Methods: The DNA from 160 patients (99% Caucasian) on renal replacement therapy (RRT) was genotyped. The primary renal disease was ADPKD in 100 patients and biopsy-proven IgAN in 60 patients.

Results: Overall, the mean age at commencement of RRT was not significantly different between patients with and without an S-allele (44.1 years versus 45.0 years, P = 0.64). In patients with ADPKD, the age at commencement of RRT was comparable regardless of the HO-1 genotype (47.7 years versus 46.7 years, P = 0.59). The same was true in patients with IgAN (38.3 years versus 42.2 years, P = 0.28).

Conclusion: This suggests that the functional HO-1 promoter polymorphism does not influence renal survival in CKD due to ADPKD or IgAN.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Interleukin-17A (IL-17A) is the founding member of a novel family of inflammatory cytokines that plays a critical role in the pathogenesis of many autoimmune diseases, including multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). IL-17A signals through its receptor, IL-17RA, which is expressed in many peripheral tissues; however, expression of IL-17RA in the central nervous system (CNS) and its role in CNS inflammation are not well understood. Methods: EAE was induced in C57Bl/6 mice by immunization with myelin oligodendroglial glycoprotein. IL-17RA expression in the CNS was compared between control and EAE mice using RT-PCR, in situ hybridization, and immunohistochemistry. Cell-type specific expression was examined in isolated astrocytic and microglial cell cultures. Cytokine and chemokine production was measured in IL-17A treated cultures to evaluate the functional status of IL-17RA. Results: Here we report increased IL-17RA expression in the CNS of mice with EAE, and constitutive expression of functional IL-17RA in mouse CNS tissue. Specifically, astrocytes and microglia express IL-17RA in vitro, and IL-17A treatment induces biological responses in these cells, including significant upregulation of MCP-1, MCP-5, MIP-2 and KC chemokine secretion. Exogenous IL-17A does not significantly alter the expression of IL-17RA in glial cells, suggesting that upregulation of chemokines by glial cells is due to IL-17A signaling through constitutively expressed IL-17RA. Conclusion: IL-17RA expression is significantly increased in the CNS of mice with EAE compared to healthy mice, suggesting that IL-17RA signaling in glial cells can play an important role in autoimmune inflammation of the CNS and may be a potential pathway to target for therapeutic interventions. © 2009 Sarma et al; licensee BioMed Central Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE
To investigate changes in gene expression during aging of the retina in the mouse.

METHODS
Total RNA was extracted from the neuroretina of young (3-month-old) and old (20-month-old) mice and processed for microarray analysis. Age-related, differentially expressed genes were assessed by the empiric Bayes shrinkagemoderated t-statistics method. Statistical significance was based on dual criteria of a ratio of change in gene expression >2 and a P < 0.01. Differential expression in 11 selected genes was further verified by real-time PCR. Functional pathways involved in retinal ageing were analyzed by an online software package (DAVID-2008) in differentially expressed gene lists. Age-related changes in differential expression in the identified retinal molecular pathways were further confirmed by immunohistochemical staining of retinal flat mounts and retinal cryosections.

RESULTS
With ageing of the retina, 298 genes were upregulated and 137 genes were downregulated. Functional annotation showed that genes linked to immune responses (Ir genes) and to tissue stress/injury responses (TS/I genes) were most likely to be modified by ageing. The Ir genes affected included those regulating leukocyte activation, chemotaxis, endocytosis, complement activation, phagocytosis, and myeloid cell differentiation, most of which were upregulated, with only a few downregulated. Increased microglial and complement activation in the aging retina was further confirmed by confocal microscopy of retinal tissues. The most strongly upregulated gene was the calcitonin receptor (Calcr; >40-fold in old versus young mice).

CONCLUSIONS
The results suggest that retinal ageing is accompanied by activation of gene sets, which are involved in local inflammatory responses. A modified form of low-grade chronic inflammation (para-inflammation) characterizes these aging changes and involves mainly the innate immune system. The marked upregulation of Calcr in ageing mice most likely reflects this chronic inflammatory/stress response, since calcitonin is a known systemic biomarker of inflammation/sepsis. © Association for Research in Vision and Ophthalmology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: We investigated the 3-dimensional morphological arrangement of KIT positive interstitial cells of Cajal in the human bladder and explored their structural interactions with neighboring cells.MATERIALS AND METHODS: Human bladder biopsy samples were prepared for immunohistochemistry/confocal or transmission electron microscopy.RESULTS: Whole mount, flat sheet preparations labeled with anti-KIT (Merck, Darmstadt, Germany) contained several immunopositive interstitial cell of Cajal populations. A network of stellate interstitial cells of Cajal in the lamina propria made structural connections with a cholinergic nerve plexus. Vimentin positive cells of several morphologies were present in the lamina propria, presumably including fibroblasts, interstitial cells of Cajal and other cells of mesenchymal origin. Microvessels were abundant in this region and branched, elongated KIT positive interstitial cells of Cajal were found discretely along the vessel axis with each perivascular interstitial cell of Cajal associated with at least 6 vascular smooth muscle cells. Detrusor interstitial cells of Cajal were spindle-shaped, branched cells tracking the smooth muscle bundles, closely associated with smooth muscle cells and vesicular acetylcholine transferase nerves. Rounded, nonbranched KIT positive cells were more numerous in the lamina propria than in the detrusor and were immunopositive for anti-mast cell tryptase. Transmission electron microscopy revealed cells with the ultrastructural characteristics of interstitial cells of Cajal throughout the human bladder wall.CONCLUSIONS: The human bladder contains a network of KIT positive interstitial cells of Cajal in the lamina propria, which make frequent connections with a cholinergic nerve plexus. Novel perivascular interstitial cells of Cajal were discovered close to vascular smooth muscle cells, suggesting interstitial cells of Cajal-vascular coupling in the bladder. KIT positive detrusor interstitial cells of Cajal tracked smooth muscle bundles and were associated with nerves, perhaps showing a functional tri-unit controlling bladder contractility.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study determines whether the novel designer biomimetic vector (DBV) can condense anddeliver the cytotoxic iNOS gene to breast cancer cells to achieve a therapeutic effect. We have previouslyshown the benefits of iNOS for cancer gene therapy but the stumbling block to future development hasbeen the delivery system.The DBV was expressed, purified and complexed with the iNOS gene. The particle size and chargewere determined via dynamic light scattering techniques. The toxicity of the DBV/iNOS nanoparticleswas quantified using the cell toxicity and clonogenic assays. Over expression of iNOS was confirmed viaWestern blotting and Griess test.The DBV delivery system fully condensed the iNOS gene with nanoparticles less than 100 nm. Transfectionwith the DBV/iNOS nanoparticles resulted in a maximum of 62% cell killing and less than 20%clonogenicity. INOS overexpression was confirmed and total nitrite levels were in the range of 18M.We report for the first time that the DBV can successfully deliver iNOS and achieve a therapeuticeffect. There is significant cytotoxicity coupled with evidence of a bystander effect. We concludethat the success of the DBV fusion protein in the delivery of iNOS in vitro is worthy of future in vivo experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To understand the molecular etiology of osteosarcoma, we isolated and characterized a human osteosarcoma cell line (OS1). OS1 cells have high osteogenic potential in differentiation induction media. Molecular analysis reveals OS1 cells express the pocket protein pRB and the runt-related transcription factor Runx2. Strikingly, Runx2 is expressed at higher levels in OS1 cells than in human fetal osteoblasts. Both pRB and Runx2 have growth suppressive potential in osteoblasts and are key factors controlling competency for osteoblast differentiation. The high levels of Runx2 clearly suggest osteosarcomas may form from committed osteoblasts that have bypassed growth restrictions normally imposed by Runx2. Interestingly, OS1 cells do not exhibit p53 expression and thus lack a functional p53/p21 DNA damage response pathway as has been observed for other osteosarcoma cell types. Absence of this pathway predicts genomic instability and/or vulnerability to secondary mutations that may counteract the anti-proliferative activity of Runx2 that is normally observed in osteoblasts. We conclude OS1 cells provide a valuable cell culture model to examine molecular events that are responsible for the pathologic conversion of phenotypically normal osteoblast precursors into osteosarcoma cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A tissue microarray analysis of 22 proteins in gastrointestinal stromal tumours ( GIST), followed by an unsupervised, hierarchical monothetic cluster statistical analysis of the results, allowed us to detect a vascular endothelial growth factor ( VEGF) protein overexpression signature discriminator of prognosis in GIST, and discover novel VEGF-A DNA variants that may have functional significance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND:
Acid-sensing ion channels (ASIC) are a family of acid-activated ligand-gated cation channels. As tissue acidosis is a feature of inflammatory conditions, such as allergic rhinitis (AR), we investigated the expression and function of these channels in AR.
OBJECTIVES:
The aim of the study was to assess expression and function of ASIC channels in the nasal mucosa of control and AR subjects.
METHODS:
Immunohistochemical localization of ASIC receptors and functional responses to lactic acid application were investigated. In vitro studies on cultured epithelial cells were performed to assess underlying mechanisms of ASIC function.
RESULTS:
Lactic acid at pH 7.03 induced a significant rise in nasal fluid secretion that was inhibited by pre-treatment with the ASIC inhibitor amiloride in AR subjects (n = 19). Quantitative PCR on cDNA isolated from nasal biopsies from control and AR subjects demonstrated that ASIC-1 was equally expressed in both populations, but ASIC-3 was significantly more highly expressed in AR (P < 0.02). Immunohistochemistry confirmed significantly higher ASIC-3 protein expression on nasal epithelial cells in AR patients than controls (P < 0.01). Immunoreactivity for EPO+ eosinophils in both nasal epithelium and submucosa was more prominent in AR compared with controls. A mechanism of induction of ASIC-3 expression relevant to AR was suggested by the finding that eosinophil peroxidase (EPO), acting via ERK1/2, induced the expression of ASIC-3 in epithelial cells. Furthermore, using a quantitative functional measure of epithelial cell secretory function in vitro, EPO increased the air-surface liquid depth via an ASIC-dependent chloride secretory pathway.
CONCLUSIONS:
This data suggests a possible mechanism for the observed association of eosinophils and rhinorrhoea in AR and is manifested through enhanced ASIC-3 expression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Under inflammatory conditions, macrophages can differentiate into different functional subtypes. We show that bone marrow-derived macrophages constitutively express different levels of various complement-related genes. The relative expression levels are C1qb > Crry > CFH > C3 > C1r > CFB > DAF1 > CD59a > C2 > C1INH > C1s > C4. Upon activation, the expression of C1r, C1s, C3, C2, CFB, and C1INH was up-regulated, and CFH, CD59a, and DAF1, down-regulated in M1 (induced by interferon-? + lipopolysaccharides (LPS)) and M2b (induced by immune complex + LPS) macrophages. The expression of C4 and CFH was slightly up-regulated in interleukin (IL)-10-induced M2c macrophages. Complement gene expression in IL-4-induced M2a macrophages was weakly down-regulated as compared to resting M0 macrophages. Higher levels of C3, C1INH, and CFB but lower levels of CFH expression in M1 and M2b macrophage suggests that they may be involved in the alternative pathway of complement activation during inflammation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

WaaL is a membrane enzyme implicated in ligating undecaprenyl-diphosphate (Und-PP)-linked O antigen to lipid A-core oligosaccharide. We determined the periplasmic location of a large (EL5) and small (EL4) adjacent loops in the Escherichia coli K-12 WaaL. Structural models of the EL5 from the K-12, R1 and R4 E. coli ligases were generated by molecular dynamics. Despite the poor amino acid sequence conservation among these proteins, the models afforded similar folds consisting of two pairs of almost perpendicular alpha-helices. One alpha-helix in each pair contributes a histidine and an arginine facing each other, which are highly conserved in WaaL homologues. Mutations in either residue rendered WaaL non-functional, since mutant proteins were unable to restore O antigen surface expression. Replacements of residues located away from the putative catalytic centre and non-conserved residues within the centre itself did not affect ligation. Furthermore, replacing a highly conserved arginine in EL4 with various amino acids inactivates WaaL function, but functionality reappears when the positive charge is restored by a replacement with lysine. These results lead us to propose that the conserved amino acids in the two adjacent periplasmic loops could interact with Und-PP, which is the common component in all WaaL substrates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the involvement of Tol proteins in the surface expression of lipopolysaccharide (LPS). tolQ, -R, -A and -B mutants of Escherichia coli K-12, which do not form a complete LPS-containing O antigen, were transformed with the O7+ cosmid pJHCV32. The tolA and tolQ mutants showed reduced O7 LPS expression compared with the respective isogenic parent strains. No changes in O7 LPS expression were found in the other tol mutants. The O7-deficient phenotype in the tolQ and tolA mutants was complemented with a plasmid encoding the tolQRA operon, but not with a similar plasmid containing a frameshift mutation inactivating tolA. Therefore, the reduction in O7 LPS was attributed to the lack of a functional tolA gene, caused either by a direct mutation of this gene or by a polar effect on tolA gene expression exerted by the tolQ mutation. Reduced surface expression of O7 LPS was not caused by changes in lipid A-core structure or downregulation of the O7 LPS promoter. However, an abnormal accumulation of radiolabelled mannose was detected in the plasma membrane. As mannose is a sugar unique to the O7 subunit, this result suggested the presence of accumulated O7 LPS biosynthesis intermediates. Attempts to construct a tolA mutant in the E. coli O7 wild-type strain VW187 were unsuccessful, suggesting that this mutation is lethal. In contrast, a polar tolQ mutation affecting tolA expression in VW187 caused slow growth rate and serum sensitivity in addition to reduced O7 LPS production. VW187 tolQ cells showed an elongated morphology and became permeable to the membrane-impermeable dye propidium iodide. All these phenotypes were corrected upon complementation with cloned tol genes but were not restored by complementation with the tolQRA operon containing the frameshift mutation in tolA. Our results demonstrate that the TolA protein plays a critical role in the surface expression of O antigen subunits by an as yet uncharacterized involvement in the processing of O antigen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pain expression in neonates instigated by heel-lance for blood sampling purposes was systematically described using measures of facial expression and cry and compared across sleep/waking states and sex. From gate-control theory it was hypothesized that pain behavior would vary with the ongoing functional state of the infant, rather than solely reflecting tissue insult. Awake-alert but inactive infants responded with the most facial activity, consistent with current views that infants in this state are most receptive to environmental stimulation. Infants in quiet sleep showed the least facial reaction and the longest latency to cry. Fundamental frequency of cry was not related to sleep/waking state. This suggested that findings from the cry literature on qualities of pain cry as a reflection of nervous system 'stress', in unwell newborns, do not generalize directly to healthy infants as a function of state. Sex differences were apparent in speed of response, with boys showing shorter time to cry and to display facial action following heel-lance. The findings of facial action variation across sleep/waking state were interpreted as indicating that the biological and behavioral context of pain events affects behavioral expression, even at the earliest time developmentally, before the opportunity for learned response patterns occurs. Issues raised by the study include the importance of using measurement techniques which are independent of preconceived categories of affective response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Maize actin-depolymerizing factor, ZmADF, binds both G- and F-actin and enhances in vitro actin dynamics. Evidence from studies on vertebrate ADF/cofilin supports the view that this class of protein responds to intracellular and extracellular signals and causes actin reorganization. As a test to determine whether such signal-responsive pathways existed in plants, this study addressed the ability of maize ADF to be phosphorylated and the likely effects of such phosphorylation on its capacity to modulate actin dynamics. It is shown that maize ADF3 (ZmADF3) can be phosphorylated by a calcium-stimulated protein kinase present in a 40-70% ammonium sulphate fraction of a plant cell extract. Phosphorylation is shown to be on Ser6, which is only one of nine amino acids that are fully conserved among the ADF/cofilin proteins across distantly related species. In addition, an analogue of phosphorylated ZmADF3 created by mutating Ser6 to Asp6 (zmadf3-4) does not bind G- or F-actin and has little effect on the enhancement of actin dynamics. These results are discussed in context of the previously observed actin reorganization in root hair cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding the molecular etiology of cancer and increasing the number of drugs and their targets are critical to cancer management. In our attempt to unravel novel breast-cancer associated proteins, we previously conducted protein expression profiling of the MCF10AT model, which comprises a series of isogenic cell lines that mimic different stages of breast cancer progression. NRD1 expression was found to increase during breast cancer progression. Here, we attempted to confirm the relevance of NRD1 in clinical breast cancer and understand the functional role and mechanism of NRD1 in breast cancer cells. Immunohistochemistry data show that NRD1 expression was elevated in ductal carcinoma in situ and invasive ductal carcinomas compared with normal tissues in 30% of the 26 matched cases studied. Examination of NRD1 expression in tissue microarray comprising >100 carcinomas and subsequent correlation with clinical data revealed that NRD1 expression was significantly associated with tumor size, grade, and nodal status (P <0.05). Silencing of NRD1 reduced MCF10CA1h and MDA-MD-231 breast-cancer-cell proliferation and growth. Probing the oncogenic EGF signaling pathways revealed that NRD1 knock down did not affect overall downstream tyrosine phosphorylation cascades including AKT and MAPK activation. Instead, silencing of NRD1 resulted in a reduction of overall cyclin D1 expression, a reduction of EGF-induced increase in cyclin D1 expression and an increase in apoptotic cell population compared with control cells.