910 resultados para FUELS
Resumo:
Different human activities like combustion of fossil fuels, biomass burning, industrial and agricultural activities, emit a large amount of particulates into the atmosphere. As a consequence, the air we inhale contains significant amount of suspended particles, including organic and inorganic solids and liquids, as well as various microorganism, which are solely responsible for a number of pulmonary diseases. Developing a numerical model for transport and deposition of foreign particles in realistic lung geometry is very challenging due to the complex geometrical structure of the human lung. In this study, we have numerically investigated the airborne particle transport and its deposition in human lung surface. In order to obtain the appropriate results of particle transport and deposition in human lung, we have generated realistic lung geometry from the CT scan obtained from a local hospital. For a more accurate approach, we have also created a mucus layer inside the geometry, adjacent to the lung surface and added all apposite mucus layer properties to the wall surface. The Lagrangian particle tracking technique is employed by using ANSYS FLUENT solver to simulate the steady-state inspiratory flow. Various injection techniques have been introduced to release the foreign particles through the inlet of the geometry. In order to investigate the effects of particle size on deposition, numerical calculations are carried out for different sizes of particles ranging from 1 micron to 10 micron. The numerical results show that particle deposition pattern is completely dependent on its initial position and in case of realistic geometry; most of the particles are deposited on the rough wall surface of the lung geometry instead of carinal region.
Resumo:
The Rio+20 summit has raised a number of difficult questions about law and technology: what is the relationship between intellectual property and the environment? What role does intellectual property play in sustainable development? Who will own and control the Green Economy? What is the best way to encourage the transfer of environmentally sound technologies? Should intellectual property provide incentives for fossil fuels? What are the respective roles of the public sector and the private sector in green innovation? How should biodiversity, traditional knowledge and Indigenous intellectual property be protected?
Resumo:
In the prospect of limited energy resources and climate change, effects of alternative biofuels on primary emissions are being extensively studied. Our two recent studies have shown that biodiesel fuel composition has a significant impact on primary particulate matter emissions. It was also shown that particulate matter caused by biodiesels was substantially different from the emissions due to petroleum diesel. Emissions appeared to have higher oxidative potential with the increase in oxygen content and decrease of carbon chain length and unsaturation levels of fuel molecules. Overall, both studies concluded that chemical composition of biodiesel is more important than its physical properties in controlling exhaust particle emissions. This suggests that the atmospheric aging processes, including secondary organic aerosol formation, of emissions from different fuels will be different as well. In this study, measurements were conducted on a modern common-rail diesel engine. To get more information on realistic properties of tested biodiesel particulate matter once they are released into the atmosphere, particulate matter was exposed to atmospheric oxidants, ozone and ultra-violet light; and the change in their properties was monitored for different biodiesel blends. Upon the exposure to oxidative agents, the chemical composition of the exhaust changes. It triggers the cascade of photochemical reactions resulting in the partitioning of semi-volatile compounds between the gas and particulate phase. In most of the cases, aging lead to the increase in volatility and oxidative potential, and the increment of change was mainly dependent on the chemical composition of fuels as the leading cause for the amount and the type of semi-volatile compounds present in the exhaust.
Resumo:
Oleaginous microorganisms have potential to be used to produce oils as alternative feedstock for biodiesel production. Microalgae (Chlorella protothecoides and Chlorella zofingiensis), yeasts (Cryptococcus albidus and Rhodotorula mucilaginosa), and fungi (Aspergillus oryzae and Mucor plumbeus) were investigated for their ability to produce oil from glucose, xylose and glycerol. Multi-criteria analysis (MCA) using analytic hierarchy process (AHP) and preference ranking organization method for the enrichment of evaluations (PROMETHEE) with graphical analysis for interactive aid (GAIA), was used to rank and select the preferred microorganisms for oil production for biodiesel application. This was based on a number of criteria viz., oil concentration, content, production rate and yield, substrate consumption rate, fatty acids composition, biomass harvesting and nutrient costs. PROMETHEE selected A. oryzae, M. plumbeus and R. mucilaginosa as the most prospective species for oil production. However, further analysis by GAIA Webs identified A. oryzae and M. plumbeus as the best performing microorganisms.
Resumo:
This study explores the potential use of empty fruit bunch (EFB) residues from palm oil processing residues, as an alternative feedstock for microbial oil production. EFB is a readily available, lignocellulosic biomass that provides cheaper substrates for oil production in comparison to the use of pure sugars. In this study, potential oleaginous microorganisms were selected based on a multi-criteria analysis (MCA) framework which utilised Analytical Hierarchy Process (AHP) with Preference Ranking Organization Method for Enrichment Evaluation (PROMETHEE) aided by Geometrical Analysis for Interactive Aid (GAIA). The MCA framework was used to evaluate several strains of microalgae (Chlorella protothecoides and Chlorella zofingiensis), yeasts (Cryptococcus albidus and Rhodotorula mucilaginosa) and fungi (Aspergillus oryzae and Mucor plumbeus) on glucose, xylose and glycerol. Based on the results of PROMETHEE rankings and GAIA plane, fungal strains A. oryzae and M. plumbeus and yeast strain R. mucilaginosa showed great promise for oil production from lignocellulosic hydrolysates. The study further cultivated A. oryzae, M. plumbeus and R. mucilaginosa on EFB hydrolysates for oil production. EFB was pretreated with dilute sulfuric acid, followed by enzymatic saccharification of solid residue. Hydrolysates tested in this study are detoxified liquid hydrolysates (LH) and enzymatic hydrolysate (EH).
Resumo:
Road agencies face growing pressure to respond to a range of issues associated with climate change and the reliance on fossil fuels. A key part of this response will be to reduce the dependency on fossil fuel based energy (and the associated greenhouse gas emissions) of transport, both vehicles and infrastructure. This paper presents findings of investigations into three key areas of innovative technologies and processes, namely the inclusion of onsite renewable energy generation technologies as part of road and transport infrastructure, the potential for automated motorways to reduce traffic fuel consumption (referred to as 'Smart Roads'), and the reduction of energy demand from route and signal lighting. The paper then concludes with the recommendation for the engineering profession to embrace sustainability performance assessment and rating tools as the basis for enhancing and communicating the contribution to Australia's response to climate change. Such tools provide a rigorous structure that can standardise approaches to key issues across entire sectors and provide clarity on the evidence required to demonstrate leading performance. The paper has been developed with funding and support provided by Australia's Sustainable Built Environment National Research Centre (SBEnrc), working with partners including Main Roads Western Australia, NSW Roads and Maritime Services, Queensland Department of Transport and Main Roads, John Holland Group, the Infrastructure Sustainability Council of Australia, Roads Australia, and the CRC for Low Carbon Living.
Resumo:
Sugar cane biomass is one of the most viable feedstocks for the production of renewable fuels and chemicals. Therefore, processing the whole of crop (WC) (i.e., stalk and trash, instead of stalk only) will increase the amount of available biomass for this purpose. However, effective clarification of juice expressed from WC for raw sugar manufacture is a major challenge because of the amounts and types of non-sucrose impurities (e.g., polysaccharides, inorganics, proteins, etc.) present. Calcium phosphate flocs are important during sugar cane juice clarification because they are responsible for the removal of impurities. Therefore, to gain a better understanding of the role of calcium phosphate flocs during the juice clarification process,the effects of impurities on the physicochemical properties of calcium phosphate flocs were examined using small-angle laser light scattering technique, attenuated total reflectance Fourier transformed infrared spectroscopy, and X-ray powder diffraction. Results on synthetic sugar juice solutions showed that the presence of SiO2 and Na+ ions affected floc size and floc structure. Starch and phosphate ions did not affect the floc structure; however, the former reduced the floc size, whereas the latter increased the floc size. The study revealed that high levels of Na+ ions would negatively affect the clarification process the most, as they would reduce the amount of suspended particles trapped by the flocs. A complementary study on prepared WC juice using cold and cold/intermediate liming techniques was conducted. The study demonstrated that, in comparison to the one-stage (i.e., conventional) clarification process, a two-stage clarification process using cold liming removed more polysaccharides (≤19%),proteins (≤82%), phosphorus (≤53%), and SiO2 (≤23%) in WC juice but increased Ca2+ (≤136%) and sulfur (≤200%)
Resumo:
Greenhouse gas (GHG) emissions are simultaneously exhausting the world's supply of fossil fuels and threatening the global climate. In many developing countries, significant improvement in living standards in recent years due to the accelerating development of their economies has resulted in a disproportionate increase in household energy consumption. Therefore, a major reduction in household carbon emissions (HCEs) is essential if global carbon reduction targets are to be met. To do this, major Organisation for Economic Co-operation and Development (OECD) states have already implemented policies to alleviate the negative environmental effects of household behaviors and less carbon-intensive technologies are also proposed to promote energy efficiency and reduce carbon emissions. However, before any further remedial actions can be contemplated, though, it is important to fully understand the actual causes of such large HCEs and help researchers both gain deep insights into the development of the research domain and identify valuable research topics for future study. This paper reviews existing literature focusing on the domain of HCEs. This critical review provides a systematic understanding of current work in the field, describing the factors influencing HCEs under the themes of household income, household size, age, education level, location, gender and rebound effects. The main quantification methodologies of input–output models, life cycle assessment and emission coefficient methods are also presented, and the proposed measures to mitigate HCEs at the policy, technology and consumer levels. Finally, the limitations of work done to date and further research directions are identified for the benefit of future studies.
Resumo:
The insecure supply of fossil fuel coerces the scientific society to keep a vision to boost investments in the renewable energy sector. Among the many renewable fuels currently available around the world, biodiesel offers an immediate impact in our energy. In fact, a huge interest in related research indicates a promising future for the biodiesel technology. Heterogeneous catalyzed production of biodiesel has emerged as a preferred route as it is environmentally benign needs no water washing and product separation is much easier. The number of well-defined catalyst complexes that are able to catalyze transesterification reactions efficiently has been significantly expanded in recent years. The activity of catalysts, specifically in application to solid acid/base catalyst in transesterification reaction depends on their structure, strength of basicity/acidity, surface area as well as the stability of catalyst. There are various process intensification technologies based on the use of alternate energy sources such as ultrasound and microwave. The latest advances in research and development related to biodiesel production is represented by non-catalytic supercritical method and focussed exclusively on these processes as forthcoming transesterification processes. The latest developments in this field featuring highly active catalyst complexes are outlined in this review. The knowledge of more extensive research on advances in biofuels will allow a deeper insight into the mechanism of these technologies toward meeting the critical energy challenges in future.
Resumo:
The study monitored the emissions of volatile organic compounds (VOCs) from the exhaust of cars fuelled by liquefied petroleum gas (LPG) and unleaded petrol (ULP). Six cars, four fuelled by LPG and two by ULP, were tested on a chassis dynamometer at two different cruising modes of operation (60 km h−1 and 80 km h−1) and idle. A total of 33 VOCs were identified in the exhaust of both types of fuels by the use of GC/MS. Due to the complexity of the dataset, Multi Criteria Decision Making (MCDM) software PROMETHEE and GAIA was used to rank the least polluting mode and fuel. The 60 km h−1 driving speed was identified as the cleaner mode of driving as was LPG fuel. The Ozone Formation Potential (OFP) of the VOCs was also calculated by using the incremental reactivity scale. Priority VOCs leading to ozone formation were identified according to the three incremental reactivity scales: MIR, MOIR and EBIR. PROMETHEE was applied to assess the most preferred scale of reactivity for predicting ozone formation potential under different scenarios. The results enhance the understanding of the environmental value of using LPG to power passenger cars.
Resumo:
This paper is a condensed version of the final report of a detailed field study of rural energy consumption patterns in six villages located west of Bangalore in the dry belt of Karnataka State in India. The study was carried out in two phases; first, a pilot study of four villages and second, the detailed study of six villages, the populations of which varied from around 350 to about 950. The pilot survey ended in late 1976, and most of the data was collected for the main project in 1977. Processing of the collected data was completed in 1980. The aim was to carry out a census survey, rather than a sample study. Hence, considerable effort was expended in production of both a suitable questionnaire, ensuring that all respondents were contacted, and devising methods which would accurately reflect the actual energy use in various energy-utilising activities. In the end, 560 households out of 578 (97%) were surveyed. The following ranking was found for the various energy sources in order of average percentage contribution to the annual total energy requirement: firewood, 81·6%; human energy, 7·7%; animal energy, 2·7%; kerosene, 2·1%; electricity, 0·6% and all other sources (rice husks, agro-wastes, coal and diesel fuel), 5·3%. In other words commercial fuels made only a small contribution to the overall energy use. It should be noted that dung cakes are not burned in this region. The average energy use pattern, sector by sector, again on a percentage basis, was as follows: domestic, 88·3%; industry, 4·7%; agriculture, 4·3%; lighting, 2·2% and transport, 0·5%. The total annual per capita energy consumption was 12·6 ± 1·2 GJ, giving an average annual household consumption of around 78·6 GJ.
Resumo:
The biomass resources, existing utilization levels and the efficiency of its use have been analyzed for a South Indian village. A biomass based energy efficient strategy has been devised to meet all the energy needs of the village, including substitution of fuels such as electricity and kerosene used in specific activities. Results indicate that the potential as well as the technologies exist for such substitutions. The proposed strategy will lead to an increase in the efficiency of energy use, reduce human drudgery and make villages more self reliant.
Resumo:
The combination of dwindling petroleum reserves and population growth make the development of renewable energy and chemical resources more pressing than ever before. Plant biomass is the most abundant renewable source for energy and chemicals. Enzymes can selectively convert the polysaccharides in plant biomass into simple sugars which can then be upgraded to liquid fuels and platform chemicals using biological and/or chemical processes. Pretreatment is essential for efficient enzymatic saccharification of plant biomass and this article provides an overview of how organic solvent (organosolv) pretreatments affect the structure and chemistry of plant biomass, and how these changes enhance enzymatic saccharification. A comparison between organosolv pretreatments utilizing broadly different classes of solvents (i.e., low boiling point, high boiling point, and biphasic) is presented, with a focus on solvent recovery and formation of by-products. The reaction mechanisms that give rise to these by-products are investigated and strategies to minimize by-product formation are suggested. Finally, process simulations of organosolv pretreatments are compared and contrasted, and discussed in the context of an industrial-scale plant biomass to fermentable sugar process.
Resumo:
Extract from the executive summary: A collaborative scoping research project to identify plant oil species with potential value in the production of fibre composite resins and assess their suitability to Queensland’s regions has been conducted by QDPI&F, USQ and Loc Composites Pty Ltd. The use of plant-oil based resins in the production of fibre composites will contribute to the Queensland economy through establishing sustainable high technology building products from renewable sources while decreasing the reliance of resin production on fossil fuels. The main objective of this project was to indentify a suite of plant oil species that show agronomic adaptability to the Australian environment (e.g. climate, soils) and economic viability of extracting plant oils for resin production within a highly competitive supply and demand production market.
Resumo:
Sugarcane is a major global agricultural crop that produces significant quantities of sugar and biomass in tropical and sub-tropical regions. Over many centuries, the crop has been grown primarily for its high sugar content which traditionally contributes over 95% of the revenue derived from the crop. While the production of renewable electricity from bagasse and rum from molasses has a long history, in more recent decades significant advances have been made in the production of cogeneration products and fuel ethanol at large scale. Sugarcane biorefineries producing fuels, green chemicals, biopolymers and bio-products offer great potential for improving the profitability of sugarcane production. This paper will address the opportunities available for sugarcane biorefineries to contribute to future profitability and sustainability of the sugarcane industry.