941 resultados para FUEL PLATES
Resumo:
Consultoria Legislativa - Área XII - Recursos Minerais, Hídricos e Energéticos.
Resumo:
A new high-order refined shear deformation theory based on Reissner's mixed variational principle in conjunction with the state- space concept is used to determine the deflections and stresses for rectangular cross-ply composite plates. A zig-zag shaped function and Legendre polynomials are introduced to approximate the in-plane displacement distributions across the plate thickness. Numerical results are presented with different edge conditions, aspect ratios, lamination schemes and loadings. A comparison with the exact solutions obtained by Pagano and the results by Khdeir indicates that the present theory accurately estimates the in-plane responses.
Resumo:
A previously published discrete-layer shear deformation theory is used to analyze free vibration of laminated plates. The theory includes the assumption that the transverse shear strains across any two layers are linearly dependent on each other. The theory has the same dependent variables as first order shear deformation theory, but the set of governing differential equations is of twelfth order. No shear correction factors are required. Free vibration of simply supported symmetric and antisymmetric cross-ply plates is calculated. The numerical results are in good agreement with those from three-dimensional elasticity theory.
Resumo:
A finite element analysis associated with an asymptotic solution method for the harmonic flexural vibration of viscoelastically damped unsymmetrical sandwich plates is given. The element formulation is based on generalization of the discrete Kirchhoff theory (DKT) element formulation. The results obtained with the first order approximation of the asymptotic solution presented here are the same as those obtained by means of the modal strain energy (MSE) method. By taking more terms of the asymptotic solution, with successive calculations and use of the Padé approximants method, accuracy can be improved. The finite element computation has been verified by comparison with an analytical exact solution for rectangular plates with simply supported edges. Results for the same plates with clamped edges are also presented.
Resumo:
The simplified governing equations and corresponding boundary conditions of flexural vibration of viscoelastically damped unsymmetrical sandwich plates are given. The asymptotic solution of the equations is then discussed. If only the first terms of the asymptotic solution of all variables are taken as an approximate solution, the result is identical with that obtained from the Modal Strain Energy (MSE) Method. As more terms of the asymptotic solution are taken, the successive calculations show improved accuracy. With the natural frequencies and the modal loss factors of a damped sandwich plate known, one can calculate the response of the plate to various loads providing a reliable basis for engineering design.
Resumo:
This paper presents a summary of the authors' recent work in following areas: (1) The stress-strain fields at crack tip in Reissner's plate. (2) The calculations of the stress intensity factors in finite size plates. (3) The stress-strain fields at crack tip in Reissner's shell. (4) The calculations of the stress intensity factors and bulging coefficients in finite size spherical shells. (5) The stress-strain fields along crack tip in three dimensional body with surface crack. (6) The calculation of stress intensity factors in a plate with surface crack.
Resumo:
From observed data on lithospheric plates, a unified empirical law for plate motion,valid for continental as well as oceanic plates, is obtained in the following form: The speedof plate motion U depends linearly on a geometric parameter T_d, ratio of the sum of effectiveridge length and trench arc length to the sum of area of continental part of plate and total areaof cold sinking slab. Based on this unified law, a simple mechanical analysis shows that, themain driving forces for lithospheric plates come from push along the mid-ocean ridge andpull by the cold sinking slab, while the main drag forces consist of the viscous traction beneaththe continental part of plate and over both faces of the sinking slab. Moreover, the specific-push along ridge and pull by slab are found to be of equal magnitude.
Resumo:
A visual observation of liquid-gas two-phase flow in anode channels of a direct methanol proton exchange membrane fuel cells in microgravity has been carried out in a drop tower. The anode flow bed consisted of 2 manifolds and 11 parallel straight channels. The length, width and depth of single channel with rectangular cross section was 48.0 mm, 2.5 mm and 2.0 mm, respectively. The experimental results indicated that the size of bubbles in microgravity condition is bigger than that in normal gravity. The longer the time, the bigger the bubbles. The velocity of bubbles rising is slower than that in normal gravity because buoyancy lift is very weak in microgravity. The flow pattern in anode channels could change from bubbly flow in normal gravity to slug flow in microgravity. The gas slugs blocked supply of reactants from channels to anode catalyst layer through gas diffusion layer. When the weakened mass transfer causes concentration polarization, the output performance of fuel cells declines.
Experimental and numerical investigations in the near-burner region of a versatile multi-fuel burner