937 resultados para FREEZE-DRYING MICROSCOPY
Resumo:
Banana flour obtained from unripe banana (Musa acuminata, var. Nanico) under specific drying conditions was evaluated regarding its chemical composition and nutritional value. Results are expressed in dry weight (dw). The unripe banana flour (UBF) presented a high amount of total dietary fiber (DF) (56.24 g/100 g), which consisted of resistant starch (RS) (48.99 g/100 g), fructans (0.05 g/100 g) and DF without RS or fructans (7.2 g/100 g). The contents of available starch (AS) (27.78 g/100 g) and soluble sugars (1.81 g/100 g) were low. The main phytosterols found were campesterol (4.1 mg/100 g), stigmasterol (2.5 mg/100 g) and beta-sitosterol (6.2 mg/100 g). The total polyphenol content was 50.65 mg GAE/100 g. Antioxidant activity, by the FRAP and ORAC methods, was moderated, being 358.67 and 261.00 mu mol of Trolox equivalent/100 g, respectively. The content of Zn, Ca and Fe and mineral dialyzability were low. The procedure used to obtain UBF resulted in the recovery of undamaged starch granules and in a low-energy product (597 kJ/100 g).
Resumo:
The objective of this research was to verify the effect of drying conditions on thermal properties and resistant starch content of green banana flour (Musa cavendishii). The green banana flour is a complex-carbohydrates source, mainly of resistant starch, and quantifying its gelatinization is important to understand how it affects food processing and the functional properties of the flour. The green banana flour was obtained by drying unripe peeled bananas (first stage of ripening) in a dryer tunnel at 52 degrees C, 55 degrees C and 58 degrees C and air velocity at 0.6 m s(-1), 1.0 m s(-1) and 1.4 m s(-1). The results obtained from differential scanning calorimetry, (DSC) curves show a single endothermic transition and a flow of maximum heating at peak temperatures from (67.95 +/- 0.31)degrees C to (68.63 +/- 0.28) degrees C. ANOVA shows that only drying temperature influenced significantly (P < 0.05) the gelatinization peak temperature (Tp). Gelatinization enthalpy (Delta H) varied from 9.04 J g(-1) to 11.63 J g(-1) and no significant difference was observed for either temperature or air velocity. The resistant starch content of the flour produced varied from (40.9 +/- 0.4) g/100 g to (58.5 +/- 5.4) g/100 g, on dry basis (d. b.), and was influenced by the combination of drying conditions: flour produced at 55 degrees C/1.4 m s(-1) and 55 degrees C/1.0 m s(-1) presented higher content of resistant starch. (c) 2009 Elsevier Ltd. All rights reserved
Resumo:
Development and Characterization of L-Alanyl-L-Glutamine Containing Pellets employing Extrusion-Spheronization Method and Drying Process in Fluidized Bad Equipment"". In this work, five formulations of L-alanyl-L-glutamine (glutamine dipeptide) containing pellets with different drug concentration were developed and evaluated: F1 (9.07%); F2 (17.70%); F3 (27.98%); F4 (37.74%) e F5 (47.53%). Pellets were prepared by extrusion-spheronization method and, further, dried in fluidized bad equipment. The following assays were carried out with the batches obtained: granulometry, friability, true density and morphologic analysis. Between the five formulations evaluated, pellets obtained from F3 present best yield (75.80%), most uniform particle size distribution (89.67% of pellets with size in the range of 0.80 to 1.18), most high true density (2.1634 g/ml) and best aspect (1.0795 +/- 0.0410). Due to these features, pellets obtained from F3 were considered adequate to further polymeric coating process in order to produce a multiparticulate system to prolong L-alanyl-L-glutamine release.
Resumo:
Papain is a thiol proteolytic enzyme widely used in dermatology that found applications in wound treatment. Recently, papain was also used as absorption enhancer which can modify the peptide/ protein material in the bilayer domain. We investigated papain safety using human skin that was exposed to papain in vitro at different times: 4, 24 and 48 hours. The samples were examined using Light and Transmission Electron Microscopy (TEM) to study of the mechanisms involved in enhancer-skin interaction. After 24 hours, changes occurred in corneosomes. However, samples of 48 hours did not show major changes in agreement with the control. These findings indicated that papain could be used safely onto the skin.
Resumo:
Recently, some research groups have been developing studies aiming to apply spouted beds of inert particles for production of dried herbal extracts. However, mainly due to their complex composition, several problems arise during the spouted bed drying of herbal extracts such as bed instability, product accumulation, particle agglomeration, and bed collapse. The addition of drying carriers, like colloidal silicon dioxide, to the extractive solution can minimize these unwanted effects. The aim of this work was to study the influence of the addition of colloidal silicon dioxide on enhancement of the performance of the drying of hydroalcoholic extract of Bauhinia forficata Link on a spouted bed of inert particles. The physical properties of the herbal extract and of its mixture with colloidal silicon dioxide at several concentrations (20% to 80% related to solids content) were quantified by determination of the surface tension, rheological properties, density, pH, and contact angles with the inert surfaces. Drying performance was evaluated through determination of the elutriation ratio, product recovery ratio, and product accumulation. The product was characterized through determination of the thermal degradation of bioactive compounds and product moisture content. The results indicated that the rheological properties of the extracts and their preparations, the contact angle with inert material, and the work of adhesion play important roles in the spouted bed drying of herbal extracts. Higher concentration of the drying carrier significantly improved the spouted bed drying performance.
Resumo:
The aim of this work was to investigate the effects of drying parameters on the retention of the enzymatic activity and on the physical properties of spray-dried pineapple stem extract. A Box and Behnken experimental design was used to investigate the effects of the processing parameters on the product properties. The parameters studied were the inlet temperature of drying gas (Tgi), the feed flow rate of the pineapple extract relative to evaporative capacity of the system (Ws /Wmax), and the concentration of maltodextrin added to the extract (MD). Significant effects of the processing parameters on the retention of the proteolytic activity of the powdered extract were observed. High processing temperatures lead to a product with a smaller moisture content, particle size, and lower agglomerating tendency. A product with insignificant losses of the proteolytic activity ( 10%) and low moisture content (less than 6.5%) is obtained at selected conditions.
Resumo:
The influence of concentration and incorporation time of different drying excipients on the processing yields and physical properties of Eugenia dysenterica DC spray-dried extracts were investigated following a factorial design. Under the established conditions, the process yield ranged from 57.55 to 89.14%, and in most experiments, the recovered products presented suitable flowability and compressibility, as demonstrated by the Hausner factor, Carr index, and angle of repose. Additionally, in a general way, the parameters related to the dried products` flowability varied over a range acceptable for pharmaceutical purposes. An analysis of variance (ANOVA) proved that both factors and some of their interactions significantly affected most of the investigated responses at different levels. Mannitol proved to be an interesting alternative as an excipient for the drying of herbal extracts, even at low concentrations such as 12.5%. Furthermore, these results imply that the best condition to obtain dry extracts of E. dysenterica with high performance and adequate pharmacotechnical properties involves the lowest concentration and the highest incorporation time of mannitol.
Resumo:
Red yeast rice is a pigmented material that is traditionally used in Asia as a food colorant. In addition to food applications, red yeast rice is known in traditional Chinese medicine for its therapeutic actions. The aim of this work was to study the quality interactions during spray drying of extracts from the Monascus ruber van Tiegham fermentation broth. The quality indicators used for the dry powder properties were the levels of monacolin K, ratio of red to yellow pigments, as well as their antioxidant activity. The experiments followed a Box-Behnken design to study the effects of the adjuvant/drug ratio, adjuvant incorporation time, and oulet drying temperature on the pharmacotechnical, chemical, and biological properties of the dry extract. The influences of these factors on the characteristics of the dry powder were evaluated by the bulk density, tapped density, Carr index, Hausner factor, residual moisture content, water activity, antioxidant activity, monacolin K, yellow-to-red pigment ratio, and antioxidant activity. The analysis of variance (ANOVA) on experimental data revealed that an increase in drying temperature significantly increased the dry powder yield and caused an improvement in powder flow properties, which may be related to lower moisture contents. The drying temperature did not affect the monacolin K content in dry powder but showed a complex influence on its antioxidant activity. The increase in drying adjuvant-to-drug ratio affected the yield and also indicated a protective effect on the monacolin K content. The duration of drying adjuvant incorporation had little or negligible effect on powder properties. The dry extracts of red yeast rice showed adequate properties and the process proposed herein can be used to prepare nutraceutical products.
Resumo:
In this study the effects of spray-drying conditions on the retention of enzyme activity of lipase produced by the endophytic fungus Cercospora kikuchii have been investigated. Drying runs were carried out in a bench-top spray dryer with a concurrent flow regime. The influence of the variables inlet temperature of drying gas, Tgi (86.4 to 153.6 degrees C); mass flow rate of the enzymatic extract fed to the dryer, Ws (2.63 to 9.36g/min); and concentration of the drying adjuvant added to the extract, ADJ (1.95 to 12.05%), on the spray-drying performance and on product quality was evaluated through experimental planning and regression analysis. The use of maltodextrin, as a stabilizing agent, slightly improved the retention of enzyme activity compared to -cyclodextrin. Statistical optimization of the experimental results allowed the determination of the processing conditions that maximized the retention of the enzymatic activity (RAE), namely, concentration of drying adjuvants of 12.05%, inlet temperature of the drying gas of 153.6 degrees C, and flow rate of the enzymatic extract fed to the dryer of 9.36g/min for the both drying adjuvants investigated.
Resumo:
The present study aimed the preparation and characterization of ternary solid dispersions by direct spray drying of a liquid suspension containing curcumin, a solubility enhancer and a drying aid. The experiments followed a Box-Behnken design in order to evaluate the influence of temperature, ratio of curcumin: lipidic carrier, and the collodial silicon dioxide content on the characteristics of the microparticulated solid dispersions. The angle of repose, Hausner factor, Carr index, water activity, and solubility were used to characterize solid dispersions. The results show that water activity, Hausner factor, and Carr index varied in an acceptable range for pharmaceutical purposes. The condition that maximizes solubility was determined using an exploratory design based on a surface response analysis and allowed a 3200-fold increase in curcumin solubility. Ternary solid dispersion showed a 90% curcumin release after 10min during a dissolution test. The results show that the spray drying of a liquid feed is an attractive and promising alternative to obtain enhanced solubility drug ternary solid dispersions.
Resumo:
This work evaluates the feasibility of the draft-tube spouted bed for drying of herbal extract. Drying runs were carried out according to a central composite design in a conical-cylindrical draft-tube spouted bed. The variables studied were the percentage of the drying aid (ADJ), the drying gas flow rate relative to gas flow at minimum spouting (Q/Q(ms)), and the flow rate of extract fed to the system relative to the spouting gas flow rate W(s)/W(g)). Colloidal silicon dioxide was the drying aid used in order to improve drying performance. Statistical analysis of the effects of processing parameters on product recovery, product accumulation in the bed, and product properties permitted the identification of parameters presenting significant effects on drying. Optimized drying conditions were related to experimental parameters as follow: high levels of the percentage of drying adjuvant (ADJ), high airflow rate relative to minimum spouting (Q/Q(ms)), and low values of the feed flow rate of the extract relative to the gas flow rate (W(s)/W(g)).
Resumo:
Inclusion complexes of Lippia sidoides essential oil and beta-cyclodextrin were obtained by slurry method and its solid powdered form was prepared using spray drying. The influence of the spray drying, as well as the different essential oil:beta-cyclodextrin ratio on the characteristics of the final product was investigated. With regard to the total oil retention 1:10 mass/mass ratio as optimal was found between the essential oil and beta-cyclodextrin. Thermoanalytical techniques (TG, EGD, TG-MS) were used to support the formation of inclusion complex and to examine their physicochemical properties after accelerated storage conditions. It may be assumed that the thermal properties of the complexes were influenced not only by the different essential oil/beta-cyclodextrin ratio but also by the storage conditions. In the aspect of their thermal stabilities, complex prepared with 1:10 m/m ratio (essential oil: beta-cyclodextrin) was the most stable one.
Resumo:
The present work deals with improving the production and stabilization of lipases from Cercospora kikuchii. Maximum enzyme production (9.384 U/ml) was obtained after 6 days in a medium supplemented with 2% soybean oil. The lipases were spray dried with different adjuvants, and their stability was studied. The residual enzyme activity after drying with 10% (w/v) of lactose, b- cyclodextrin, maltodextrin, mannitol, gum arabic, and trehalose ranged from 63 to 100%. The enzyme activity was lost in the absence of adjuvants. Most of the adjuvants used kept up at least 50% of the enzymatic activity at 5 degrees C and 40% at 25 degrees C after 8 months. The lipase dried with 10% of beta-cyclodextrin retained 72% of activity at 5 degrees C. Lipases were separated by butyl-sepharose column into 4 pools, and pool 4 was partially purified (33.1%; 269.5 U/mg protein). This pool was also spray dried in maltodextrin DE10, and it maintained 100% of activity.
Resumo:
This study is an integral part of a research project which seeks the establishment of protocols for the production of standardized herbal dried extracts emphasizing the spouted bed drying. This thesis was conducted at faculty of Pharmaceutical Science of Ribeiro Preto/University of So Paulo, Brazil, under supervision of Prof. Dr. Wanderley Pereira Oliveira*, defended on September 28, 2007.
Resumo:
Magnetic resonance microscopy (MRM) depends on the use of high field, superconducting magnet systems for its operation. The magnets that are conventionally used are those that were initially designed for chemical structural analysis work. A novel, compact magnet designed specifically for MRM is presented here, and while preserving high field, high homogeneity conditions, has a length less than one-third that of conventional systems. This enables much better access to samples, an important consideration in many MRM experiments. As the homogeneity of a magnet is strongly dependent on its length, novel geometries and optimization techniques are required to meet the requirements of MRM in a compact system. An important outcome of the stochastic optimization performed in this work, is that the use used of a thin superconducting solenoid surrounded by counterwound disk windings provides a mechanism for drastic length reductions over conventional magnet designs. (C) 1998 American Institute of Physics.