910 resultados para FREEPLAY NONLINEARITY
Resumo:
Electromagnetic field produced by a lightning strike to ground causes significant induction to tall objects in the vicinity. The frequency of occurrence of such nearby ground strikes can be higher than the number of direct strikes. Therefore, a complete knowledge on these induced currents is of practical relevance. However, limited efforts towards the characterisation of such induced currents in tall down-conductors could be seen in the literature. Due to the intensification of the background field caused by the descending stepped leader, tall towers/down-conductors can launch upward leaders of significant length. The nonlinearity in the conductance of upward leader and the surrounding corona sheath can alter the characteristics of the induced currents. Preliminary aspects of this phenomenon have been studied by the author previously and the present work aims to perform a detailed investigation on the role of upward leaders in modifying the characteristics of the induced currents. A consistent model for the upward leader, which covers all the essential electrical aspects of the phenomena, is employed. A first order arc model for representing the conductance of upward leader and a field dependant quadratic conductivity model for the corona sheath is employed. The initial gradient in the upward leader and the field produced by the return stroke forms the excitation. The dynamic electromagnetic response is determined by solving the wave equation using thin-wire time-domain formulation. Simulations are carried out initially to ascertain the role of individual parameters, including the length of the upward leader. Based on the simulation results, it is shown that the upward leader enhances the induced current, and when significant in length, can alter the waveshape of induced current from bipolar oscillatory to unipolar. The duration of the induced current is governed by the length of upward leader, which in turn is dependant on the return stroke current and the effective length of the down-conductor. If the current during the upward leader developmental phase is considered along with that after the stroke termination to ground, it would present a bipolar current pulse. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Analysis of the variability in the responses of large structural systems and quantification of their linearity or nonlinearity as a potential non-invasive means of structural system assessment from output-only condition remains a challenging problem. In this study, the Delay Vector Variance (DVV) method is used for full scale testing of both pseudo-dynamic and dynamic responses of two bridges, in order to study the degree of nonlinearity of their measured response signals. The DVV detects the presence of determinism and nonlinearity in a time series and is based upon the examination of local predictability of a signal. The pseudo-dynamic data is obtained from a concrete bridge during repair while the dynamic data is obtained from a steel railway bridge traversed by a train. We show that DVV is promising as a marker in establishing the degree to which a change in the signal nonlinearity reflects the change in the real behaviour of a structure. It is also useful in establishing the sensitivity of instruments or sensors deployed to monitor such changes. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
We consider the equation Delta(2)u = g(x, u) >= 0 in the sense of distribution in Omega' = Omega\textbackslash {0} where u and -Delta u >= 0. Then it is known that u solves Delta(2)u = g(x, u) + alpha delta(0) - beta Delta delta(0), for some nonnegative constants alpha and beta. In this paper, we study the existence of singular solutions to Delta(2)u = a(x) f (u) + alpha delta(0) - beta Delta delta(0) in a domain Omega subset of R-4, a is a nonnegative measurable function in some Lebesgue space. If Delta(2)u = a(x) f (u) in Omega', then we find the growth of the nonlinearity f that determines alpha and beta to be 0. In case when alpha = beta = 0, we will establish regularity results when f (t) <= Ce-gamma t, for some C, gamma > 0. This paper extends the work of Soranzo (1997) where the author finds the barrier function in higher dimensions (N >= 5) with a specific weight function a(x) = |x|(sigma). Later, we discuss its analogous generalization for the polyharmonic operator.
Resumo:
A single step process for the synthesis of size-controlled silver nanoparticles has been developed using a bifunctional molecule, octadecylamine (ODA). Octadecylamine complexes to Ag+ ions electrostatically, reduce them, and subsequently stabilizes the nanoparticles thus formed. Hence, octadecylamine simultaneously functions as both a reducing and a stabilizing agent. The amine-capped nanoparticles can be obtained in the form of dry powder, which is readily redispersible in aqueous and organic solvents. The particle size, and the nucleation and growth kinetics of silver nanoparticles could be tuned by varying the molar ratio of ODA to AgNO3. The UV-vis spectra of nanoparticles prepared with different concentrations of ODA displayed the well-defined plasmon band with maximum absorption around 425 nm. The formation of silver metallic nanoparticles was confirmed by their XRD pattern. The binding of ODA molecule on the surface of silver has been studied by FT-IR and NMR spectroscopy. The formation of well-dispersed spherical Ag nanoparticles has been confirmed by TEM analysis. The particle size and distribution are found to be dependent on the molar concentration of the amine molecule. Open aperture z-scans have been performed to measure the nonlinearity of Ag nanoparticles. (C) 2015 Published by Elsevier B.V.
Resumo:
A closed, trans-scale formulation of damage evolution based on the statistical microdamage mechanics is summarized in this paper. The dynamic function of damage bridges the mesoscopic and macroscopic evolution of damage. The spallation in an aluminium plate is studied with this formulation. It is found that the damage evolution is governed by several dimensionless parameters, i.e., imposed Deborah numbers De* and De, Mach number M and damage number S. In particular, the most critical mode of the macroscopic damage evolution, i.e., the damage localization, is deter-mined by Deborah number De+. Deborah number De* reflects the coupling and competition between the macroscopic loading and the microdamage growth. Therefore, our results reveal the multi-scale nature of spallation. In fact, the damage localization results from the nonlinearity of the microdamage growth. In addition, the dependence of the damage rate on imposed Deborah numbers De* and De, Mach number M and damage number S is discussed.
Resumo:
The dynamic buckling of viscoelastic plates with large deflection is investigated in this paper by using chaotic and fractal theory. The material behavior is given in terms of the Boltzmann superposition principle. in order to obtain accurate computation results, the nonlinear integro-differential dynamic equation is changed into an autonomic four-dimensional dynamical system. The numerical time integrations of equations are performed by using the fourth-order Runge-Kutta method. And the Lyapunov exponent spectrum, the fractal dimension of strange attractors and the time evolution of deflection are obtained. The influence of geometry nonlinearity and viscoelastic parameter on the dynamic buckling of viscoelastic plates is discussed.
Resumo:
In this paper, we study nonlinear Kramers problem by investigating overdamped systems ruled by the one-dimensional nonlinear Fokker-Planck equation. We obtain an analytic expression for the Kramers escape rate under quasistationary conditions by employing
Resumo:
A method of determining the micro-cantilever residual stress gradients by studying its deflection and curvature is presented. The stress gradients contribute to both axial load and bending moment, which, in prebuckling regime, cause the structural stiffness change and curving up/down, respectively. As the axial load corresponds to the even polynomial terms of stress gradients and bending moment corresponds to the odd polynomial terms, the deflection itself is not enough to determine the axial load and bending moment. Curvature together with the deflection can uniquely determine these two parameters. Both linear analysis and nonlinear analysis of micro-cantilever deflection under axial load and bending moment are presented. Because of the stiffening effect due to the nonlinearity of (large) deformation, the difference between linear and nonlinear analyses enlarges as the micro-cantilever deflection increases. The model developed in this paper determines the resultant axial load and bending moment due to the stress gradients. Under proper assumptions, the stress gradients profile is obtained through the resultant axial load and bending moment.
Resumo:
The model and analysis of the cantilever beam adhesion problem under the action of electrostatic force are given. Owing to the nonlinearity of electrostatic force, the analytical solution for this kind of problem is not available. In this paper, a systematic method of generating polynomials which are the exact beamsolutions of the loads with different distributions is provided. The polynomials are used to approximate the beam displacement due to electrostatic force. The equilibrium equation offers an answer to how the beam deforms but no information about the unstuck length. The derivative of the functional with respect to the unstuck length offers such information. But to compute the functional it is necessary to know the beam deformation. So the problem is iteratively solved until the results are converged. Galerkin and Newton-Raphson methods are used to solve this nonlinear problem. The effects of dielectric layer thickness and electrostatic voltage on the cantilever beamstiction are studied.The method provided in this paper exhibits good convergence. For the adhesion problem of cantilever beam without electrostatic voltage, the analytical solution is available and is also exactly matched by the computational results given by the method presented in this paper.
Resumo:
Rupture in the heterogeneous crust appears to be a catastrophe transition. Catastrophic rupture sensitively depends on the details of heterogeneity and stress transfer on multiple scales. These are difficult to identify and deal with. As a result, the threshold of earthquake-like rupture presents uncertainty. This may be the root of the difficulty of earthquake prediction. Based on a coupled pattern mapping model, we represent critical sensitivity and trans-scale fluctuations associated with catastrophic rupture. Critical sensitivity means that a system may become significantly sensitive near catastrophe transition. Trans-scale fluctuations mean that the level of stress fluctuations increases strongly and the spatial scale of stress and damage fluctuations evolves from the mesoscopic heterogeneity scale to the macroscopic scale as the catastrophe regime is approached. The underlying mechanism behind critical sensitivity and trans-scale fluctuations is the coupling effect between heterogeneity and dynamical nonlinearity. Such features may provide clues for prediction of catastrophic rupture, like material failure and great earthquakes. Critical sensitivity may be the physical mechanism underlying a promising earthquake forecasting method, the load-unload response ratio (LURR).
Resumo:
Damage-induced anisotropy of quasi-brittle materials is investigated using component assembling model in this study. Damage-induced anisotropy is one significant character of quasi-brittle materials coupled with nonlinearity and strain softening. Formulation of such complicated phenomena is a difficult problem till now. The present model is based on the component assembling concept, where constitutive equations of materials are formed by means of assembling two kinds of components' response functions. These two kinds of components, orientational and volumetric ones, are abstracted based on pair-functional potentials and the Cauchy - Born rule. Moreover, macroscopic damage of quasi-brittle materials can be reflected by stiffness changing of orientational components, which represent grouped atomic bonds along discrete directions. Simultaneously, anisotropic characters are captured by the naturally directional property of the orientational component. Initial damage surface in the axial-shear stress space is calculated and analyzed. Furthermore, the anisotropic quasi-brittle damage behaviors of concrete under uniaxial, proportional, and nonproportional combined loading are analyzed to elucidate the utility and limitations of the present damage model. The numerical results show good agreement with the experimental data and predicted results of the classical anisotropic damage models.
Resumo:
A moving-coil designed micro-mechanics tester, named as MicroUTM (universal testing machine), is in-house developed in this paper for micro-mechanics tests. The main component is a moving coil suspended in a uniform magnetic field through a set of springs. When a current passes through the coil, the electromagnetic force is proportional to the magnitude of the current, so the load can easily be measured by the current. The displacement is measured using a capacitive sensor. The load is calibrated using a Sartorius BP211D analytical balance, with a resolution/range of 0.01 mg/80 g or 0.1 mg/210 g. The displacement is calibrated using a HEIDENHAIN CT-6002 length gauge with an accuracy of +/- 0.1 mu m. The calibration results show that the load range is +/- 1 N and the displacement range is +/- 300 mu m. The noise levels of the load and displacement are 50 mu N and 150 nm, respectively. The nonlinearity of the load is only 0.2%. Several in-plane load tests of the MEMS micro-cantilever are performed using this tester. Experimental results, with excellent repeatability, demonstrate the reliability of the load measurement as well as the flexible function of this tester.
Resumo:
In this paper, the nonlinear collapse of the BOHAI-8 pile foundation jacket platform has been analyzed. The ultimate load and collapse process of two computational models of the structure are given. One model is of fixed support whose length is eight times the pile leg diameter and the other considers the nonlinearity of the soil-pile interaction.
Resumo:
A coupled map lattices with convective nonlinearity or, for short, Convective Coupled Map (CCM) is proposed in this paper to simulate spatiotemporal chaos in fluid hows. It is found that the parameter region of spatiotemporal chaos can be determined by the maximal Liapunov exponent of its complexity time series. This simple model implies a similar physical mechanism for turbulence such that the route to spatiotemporal chaos in fluid hows can be envisaged.
Resumo:
The shear strength of soils or rocks developed in a landslide usually exhibits anisotropic and nonlinear behavior. The process of sedimentation and subsequent consolidation can cause anisotropy of sedimentary soils or rocks, for instance. Nonlinearity of failure envelope could be attributed to "interlocking" or "dilatancy" of the material, which is generally dependent upon the stress level. An analytical method considering both anisotropy and nonlinearity of the failure envelops of soil and rocks is presented in the paper. The nonlinearfailure envelopes can be determined from routine triaxial tests. A spreadsheet program, which uses the Janbu's Generalized Procedure of Slice and incorporates anisotropic, illustrates the implementation of the approach and nonlinearfailure envelops. In the analysis, an equivalent Mohr-Coulomb linear failure criterion is obtained by drawing a tangent to the nonlinear envelope of an anisotropic soil at an appropriate stress level. An illustrative example is presented to show the feasibility and numerical efficiency of the method.