882 resultados para FEEDFORWARD NEURAL-NETWORKS
Resumo:
An overview of neural networks, covering multilayer perceptrons, radial basis functions, constructive algorithms, Kohonen and K-means unupervised algorithms, RAMnets, first and second order training methods, and Bayesian regularisation methods.
Resumo:
This paper presents results from the first use of neural networks for the real-time feedback control of high temperature plasmas in a Tokamak fusion experiment. The Tokamak is currently the principal experimental device for research into the magnetic confinement approach to controlled fusion. In the Tokamak, hydrogen plasmas, at temperatures of up to 100 Million K, are confined by strong magnetic fields. Accurate control of the position and shape of the plasma boundary requires real-time feedback control of the magnetic field structure on a time-scale of a few tens of microseconds. Software simulations have demonstrated that a neural network approach can give significantly better performance than the linear technique currently used on most Tokamak experiments. The practical application of the neural network approach requires high-speed hardware, for which a fully parallel implementation of the multi-layer perceptron, using a hybrid of digital and analogue technology, has been developed.
Resumo:
The majority of current applications of neural networks are concerned with problems in pattern recognition. In this article we show how neural networks can be placed on a principled, statistical foundation, and we discuss some of the practical benefits which this brings.
Resumo:
We consider the problem of on-line gradient descent learning for general two-layer neural networks. An analytic solution is presented and used to investigate the role of the learning rate in controlling the evolution and convergence of the learning process.
Resumo:
Introductory accounts of artificial neural networks often rely for motivation on analogies with models of information processing in biological networks. One limitation of such an approach is that it offers little guidance on how to find optimal algorithms, or how to verify the correct performance of neural network systems. A central goal of this paper is to draw attention to a quite different viewpoint in which neural networks are seen as algorithms for statistical pattern recognition based on a principled, i.e. theoretically well-founded, framework. We illustrate the concept of a principled viewpoint by considering a specific issue concerned with the interpretation of the outputs of a trained network. Finally, we discuss the relevance of such an approach to the issue of the validation and verification of neural network systems.
Resumo:
The majority of current applications of neural networks are concerned with problems in pattern recognition. In this article we show how neural networks can be placed on a principled, statistical foundation, and we discuss some of the practical benefits which this brings.
Resumo:
We present an analytic solution to the problem of on-line gradient-descent learning for two-layer neural networks with an arbitrary number of hidden units in both teacher and student networks. The technique, demonstrated here for the case of adaptive input-to-hidden weights, becomes exact as the dimensionality of the input space increases.
Resumo:
We study the effect of two types of noise, data noise and model noise, in an on-line gradient-descent learning scenario for general two-layer student network with an arbitrary number of hidden units. Training examples are randomly drawn input vectors labeled by a two-layer teacher network with an arbitrary number of hidden units. Data is then corrupted by Gaussian noise affecting either the output or the model itself. We examine the effect of both types of noise on the evolution of order parameters and the generalization error in various phases of the learning process.
Resumo:
Neural networks have often been motivated by superficial analogy with biological nervous systems. Recently, however, it has become widely recognised that the effective application of neural networks requires instead a deeper understanding of the theoretical foundations of these models. Insight into neural networks comes from a number of fields including statistical pattern recognition, computational learning theory, statistics, information geometry and statistical mechanics. As an illustration of the importance of understanding the theoretical basis for neural network models, we consider their application to the solution of multi-valued inverse problems. We show how a naive application of the standard least-squares approach can lead to very poor results, and how an appreciation of the underlying statistical goals of the modelling process allows the development of a more general and more powerful formalism which can tackle the problem of multi-modality.
Resumo:
This thesis is a study of the generation of topographic mappings - dimension reducing transformations of data that preserve some element of geometric structure - with feed-forward neural networks. As an alternative to established methods, a transformational variant of Sammon's method is proposed, where the projection is effected by a radial basis function neural network. This approach is related to the statistical field of multidimensional scaling, and from that the concept of a 'subjective metric' is defined, which permits the exploitation of additional prior knowledge concerning the data in the mapping process. This then enables the generation of more appropriate feature spaces for the purposes of enhanced visualisation or subsequent classification. A comparison with established methods for feature extraction is given for data taken from the 1992 Research Assessment Exercise for higher educational institutions in the United Kingdom. This is a difficult high-dimensional dataset, and illustrates well the benefit of the new topographic technique. A generalisation of the proposed model is considered for implementation of the classical multidimensional scaling (¸mds}) routine. This is related to Oja's principal subspace neural network, whose learning rule is shown to descend the error surface of the proposed ¸mds model. Some of the technical issues concerning the design and training of topographic neural networks are investigated. It is shown that neural network models can be less sensitive to entrapment in the sub-optimal global minima that badly affect the standard Sammon algorithm, and tend to exhibit good generalisation as a result of implicit weight decay in the training process. It is further argued that for ideal structure retention, the network transformation should be perfectly smooth for all inter-data directions in input space. Finally, there is a critique of optimisation techniques for topographic mappings, and a new training algorithm is proposed. A convergence proof is given, and the method is shown to produce lower-error mappings more rapidly than previous algorithms.