980 resultados para Evolutionary Polynomial Regression (EPR) for HydroSystems


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Environmental data usually include measurements, such as water quality data, which fall below detection limits, because of limitations of the instruments or of certain analytical methods used. The fact that some responses are not detected needs to be properly taken into account in statistical analysis of such data. However, it is well-known that it is challenging to analyze a data set with detection limits, and we often have to rely on the traditional parametric methods or simple imputation methods. Distributional assumptions can lead to biased inference and justification of distributions is often not possible when the data are correlated and there is a large proportion of data below detection limits. The extent of bias is usually unknown. To draw valid conclusions and hence provide useful advice for environmental management authorities, it is essential to develop and apply an appropriate statistical methodology. This paper proposes rank-based procedures for analyzing non-normally distributed data collected at different sites over a period of time in the presence of multiple detection limits. To take account of temporal correlations within each site, we propose an optimal linear combination of estimating functions and apply the induced smoothing method to reduce the computational burden. Finally, we apply the proposed method to the water quality data collected at Susquehanna River Basin in United States of America, which dearly demonstrates the advantages of the rank regression models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider rank regression for clustered data analysis and investigate the induced smoothing method for obtaining the asymptotic covariance matrices of the parameter estimators. We prove that the induced estimating functions are asymptotically unbiased and the resulting estimators are strongly consistent and asymptotically normal. The induced smoothing approach provides an effective way for obtaining asymptotic covariance matrices for between- and within-cluster estimators and for a combined estimator to take account of within-cluster correlations. We also carry out extensive simulation studies to assess the performance of different estimators. The proposed methodology is substantially Much faster in computation and more stable in numerical results than the existing methods. We apply the proposed methodology to a dataset from a randomized clinical trial.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are numerous load estimation methods available, some of which are captured in various online tools. However, most estimators are subject to large biases statistically, and their associated uncertainties are often not reported. This makes interpretation difficult and the estimation of trends or determination of optimal sampling regimes impossible to assess. In this paper, we first propose two indices for measuring the extent of sampling bias, and then provide steps for obtaining reliable load estimates by minimizing the biases and making use of possible predictive variables. The load estimation procedure can be summarized by the following four steps: - (i) output the flow rates at regular time intervals (e.g. 10 minutes) using a time series model that captures all the peak flows; - (ii) output the predicted flow rates as in (i) at the concentration sampling times, if the corresponding flow rates are not collected; - (iii) establish a predictive model for the concentration data, which incorporates all possible predictor variables and output the predicted concentrations at the regular time intervals as in (i), and; - (iv) obtain the sum of all the products of the predicted flow and the predicted concentration over the regular time intervals to represent an estimate of the load. The key step to this approach is in the development of an appropriate predictive model for concentration. This is achieved using a generalized regression (rating-curve) approach with additional predictors that capture unique features in the flow data, namely the concept of the first flush, the location of the event on the hydrograph (e.g. rise or fall) and cumulative discounted flow. The latter may be thought of as a measure of constituent exhaustion occurring during flood events. The model also has the capacity to accommodate autocorrelation in model errors which are the result of intensive sampling during floods. Incorporating this additional information can significantly improve the predictability of concentration, and ultimately the precision with which the pollutant load is estimated. We also provide a measure of the standard error of the load estimate which incorporates model, spatial and/or temporal errors. This method also has the capacity to incorporate measurement error incurred through the sampling of flow. We illustrate this approach using the concentrations of total suspended sediment (TSS) and nitrogen oxide (NOx) and gauged flow data from the Burdekin River, a catchment delivering to the Great Barrier Reef. The sampling biases for NOx concentrations range from 2 to 10 times indicating severe biases. As we expect, the traditional average and extrapolation methods produce much higher estimates than those when bias in sampling is taken into account.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider ranked-based regression models for clustered data analysis. A weighted Wilcoxon rank method is proposed to take account of within-cluster correlations and varying cluster sizes. The asymptotic normality of the resulting estimators is established. A method to estimate covariance of the estimators is also given, which can bypass estimation of the density function. Simulation studies are carried out to compare different estimators for a number of scenarios on the correlation structure, presence/absence of outliers and different correlation values. The proposed methods appear to perform well, in particular, the one incorporating the correlation in the weighting achieves the highest efficiency and robustness against misspecification of correlation structure and outliers. A real example is provided for illustration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the study is to explain how paradise beliefs are born from the viewpoint of mental functions of the human mind. The focus is on the observation that paradise beliefs across the world are mutually more similar than dissimilar. By using recent theories and results from the cognitive and evolutionary study of religion as well as from studies of environmental preferences, I suggest that this is because pan-human unconscious motivations, the architecture of mind, and the way the human mind processes information constrain the possible repertoire of paradise beliefs. The study is divided into two parts, theoretical and empirical. The arguments in the theoretical part are tested with data in the empirical part with two data sets. The first data set was collected using an Internet survey. The second data set was derived from literary sources. The first data test the assumption that intuitive conceptions of an environment of dreams generally follow the outlines set by evolved environmental preferences, but that they can be tweaked by modifying the presence of desirable elements. The second data test the assumption that familiarity is a dominant factor determining the content of paradise beliefs. The results of the study show that in addition to the widely studied belief in supernatural agents, belief in supernatural environments wells from the natural functioning of the human mind attesting the view that religious thinking and ideas are natural for human species and are produced by the same mental mechanisms as other cultural information. The results also help us to understand that the mental structures behind the belief in the supernatural have a wider scope than has been previously acknowledged.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider rank-based regression models for repeated measures. To account for possible withinsubject correlations, we decompose the total ranks into between- and within-subject ranks and obtain two different estimators based on between- and within-subject ranks. A simple perturbation method is then introduced to generate bootstrap replicates of the estimating functions and the parameter estimates. This provides a convenient way for combining the corresponding two types of estimating function for more efficient estimation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adaptions of weighted rank regression to the accelerated failure time model for censored survival data have been successful in yielding asymptotically normal estimates and flexible weighting schemes to increase statistical efficiencies. However, for only one simple weighting scheme, Gehan or Wilcoxon weights, are estimating equations guaranteed to be monotone in parameter components, and even in this case are step functions, requiring the equivalent of linear programming for computation. The lack of smoothness makes standard error or covariance matrix estimation even more difficult. An induced smoothing technique overcame these difficulties in various problems involving monotone but pure jump estimating equations, including conventional rank regression. The present paper applies induced smoothing to the Gehan-Wilcoxon weighted rank regression for the accelerated failure time model, for the more difficult case of survival time data subject to censoring, where the inapplicability of permutation arguments necessitates a new method of estimating null variance of estimating functions. Smooth monotone parameter estimation and rapid, reliable standard error or covariance matrix estimation is obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article is motivated by a lung cancer study where a regression model is involved and the response variable is too expensive to measure but the predictor variable can be measured easily with relatively negligible cost. This situation occurs quite often in medical studies, quantitative genetics, and ecological and environmental studies. In this article, by using the idea of ranked-set sampling (RSS), we develop sampling strategies that can reduce cost and increase efficiency of the regression analysis for the above-mentioned situation. The developed method is applied retrospectively to a lung cancer study. In the lung cancer study, the interest is to investigate the association between smoking status and three biomarkers: polyphenol DNA adducts, micronuclei, and sister chromatic exchanges. Optimal sampling schemes with different optimality criteria such as A-, D-, and integrated mean square error (IMSE)-optimality are considered in the application. With set size 10 in RSS, the improvement of the optimal schemes over simple random sampling (SRS) is great. For instance, by using the optimal scheme with IMSE-optimality, the IMSEs of the estimated regression functions for the three biomarkers are reduced to about half of those incurred by using SRS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Results of temperature dependence of EPR spectra of Mn2+ and Cu2+ ions doped calcium cadmium acetate hexahydrate (CaCd(CH3COO)4•6H2O) have been reported. The investigation has been carried out in the temperature range between room temperature ( 300 K) and liquid nitrogen temperature. A I-order phase transition at 146 ± 0.5 K has been confirmed. In addition a new II-order phase transition at 128 ± 1 K has been detected for the first time. There is evidence of large amplitude hindered rotations of CH3 groups which become frozen at 128 K. The incorporation of Cu2+ and Mn2+ probes at Ca2+ and Cd2+ sites respectively provide evidence that the phase transitions are caused by the molecular rearrangements of the common coordinating acetate groups between Ca2+ and Cd2+ sites. In contradiction to the previous reports of a change of symmetry from tetragonal to orthorhombic below 140 K, the symmetry of the host is concluded to remain tetragonal in all the three observed phases between room temperature and liquid nitrogen temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the thesis it is discussed in what ways concepts and methodology developed in evolutionary biology can be applied to the explanation and research of language change. The parallel nature of the mechanisms of biological evolution and language change is explored along with the history of the exchange of ideas between these two disciplines. Against this background computational methods developed in evolutionary biology are taken into consideration in terms of their applicability to the study of historical relationships between languages. Different phylogenetic methods are explained in common terminology, avoiding the technical language of statistics. The thesis is on one hand a synthesis of earlier scientific discussion, and on the other an attempt to map out the problems of earlier approaches in addition to finding new guidelines in the study of language change on their basis. Primarily literature about the connections between evolutionary biology and language change, along with research articles describing applications of phylogenetic methods into language change have been used as source material. The thesis starts out by describing the initial development of the disciplines of evolutionary biology and historical linguistics, a process which right from the beginning can be seen to have involved an exchange of ideas concerning the mechanisms of language change and biological evolution. The historical discussion lays the foundation for the handling of the generalised account of selection developed during the recent few decades. This account is aimed for creating a theoretical framework capable of explaining both biological evolution and cultural change as selection processes acting on self-replicating entities. This thesis focusses on the capacity of the generalised account of selection to describe language change as a process of this kind. In biology, the mechanisms of evolution are seen to form populations of genetically related organisms through time. One of the central questions explored in this thesis is whether selection theory makes it possible to picture languages are forming populations of a similar kind, and what a perspective like this can offer to the understanding of language in general. In historical linguistics, the comparative method and other, complementing methods have been traditionally used to study the development of languages from a common ancestral language. Computational, quantitative methods have not become widely used as part of the central methodology of historical linguistics. After the fading of a limited popularity enjoyed by the lexicostatistical method since the 1950s, only in the recent years have also the computational methods of phylogenetic inference used in evolutionary biology been applied to the study of early language history. In this thesis the possibilities offered by the traditional methodology of historical linguistics and the new phylogenetic methods are compared. The methods are approached through the ways in which they have been applied to the Indo-European languages, which is the most thoroughly investigated language family using both the traditional and the phylogenetic methods. The problems of these applications along with the optimal form of the linguistic data used in these methods are explored in the thesis. The mechanisms of biological evolution are seen in the thesis as parallel in a limited sense to the mechanisms of language change, however sufficiently so that the development of a generalised account of selection is deemed as possibly fruiful for understanding language change. These similarities are also seen to support the validity of using phylogenetic methods in the study of language history, although the use of linguistic data and the models of language change employed by these models are seen to await further development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Models that implement the bio-physical components of agro-ecosystems are ideally suited for exploring sustainability issues in cropping systems. Sustainability may be represented as a number of objectives to be maximised or minimised. However, the full decision space of these objectives is usually very large and simplifications are necessary to safeguard computational feasibility. Different optimisation approaches have been proposed in the literature, usually based on mathematical programming techniques. Here, we present a search approach based on a multiobjective evaluation technique within an evolutionary algorithm (EA), linked to the APSIM cropping systems model. A simple case study addressing crop choice and sowing rules in North-East Australian cropping systems is used to illustrate the methodology. Sustainability of these systems is evaluated in terms of economic performance and resource use. Due to the limited size of this sample problem, the quality of the EA optimisation can be assessed by comparison to the full problem domain. Results demonstrate that the EA procedure, parameterised with generic parameters from the literature, converges to a useable solution set within a reasonable amount of time. Frontier ‘‘peels’’ or Pareto-optimal solutions as described by the multiobjective evaluation procedure provide useful information for discussion on trade-offs between conflicting objectives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An investigation of the phase transitions at high pressures in the alums mentioned in the title has been carried out using EPR of the Cr3+ ion (at the trivalent metal ion site). It is observed that at ambient as well as at high pressures there is a change of slope in the linear variations of the zero field splitting with temperature and that the low temperature phase is characterised by a large number of lines in the EPR spectra. The transition temperature shows a large positive shift with pressure, for both the alums. All these facts are explained in terms of our model of the origin of the trigonal field at the trivalent metal ion site as well as the details of the motion of NH4+ ion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies have suggested that bats are the natural reservoir of a range of coronaviruses (CoVs), and that rhinolophid bats harbor viruses closely related to the severe acute respiratory syndrome (SARS) CoV, which caused an outbreak of respiratory illness in humans during 2002-2003. We examined the evolutionary relationships between bat CoVs and their hosts by using sequence data of the virus RNA-dependent RNA polymerase gene and the bat cytochrome b gene. Phylogenetic analyses showed multiple incongruent associations between the phylogenies of rhinolophid bats and their CoVs, which suggested that host shifts have occurred in the recent evolutionary history of this group. These shifts may be due to either virus biologic traits or host behavioral traits. This finding has implications for the emergence of SARS and for the potential future emergence of SARS-CoVs or related viruses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low concentration of Mn (< 0.05 atom%) added to lanthanide-doped ceramics for enhancing the PTC effect did not show any EPR signal due to Mn in the tetragonal phase. Above Tc (400 K) it showed the six-line signal arising from Mn2+. This is explained on the basis of Mn existing as Mn3+ ion with short relaxation time at room temperature. Oxidation state changes to Mn2+ above Tc; thus Mn3+ acts as an electron trap. This augments the function of activated defect centres (VBa /ag VBa) in diminishing the charge carrier concentration across the phase transformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

EPR spectra of lithium potassium sulfate doped with NH3+ have been recorded at 9.05 GHz. A pair of satellites can be seen symmetrically situated on either side of the main lines. The separation of the satellite lines from the main line corresponds to the 7Li NMR frequency. The distance of the interacting 7Li nucleus from the unpaired electron in NH3+ is estimated to be 3.29 Å.