980 resultados para Evaporation (Meteorology)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Raman analysis of dilute aqueous solutions is normally prevented by their low signal levels. A very general method to increase the concentration to detectable levels is to evaporate droplets of the sample to dryness, creating solid deposits which are then Raman probed. Here, superhydrophobic (SHP) wires with hydrophilic tips have been used as supports for drying droplets, which have the advantage that the residue is automatically deposited at the tip. The SHP wires were readily prepared in minutes using electroless galvanic deposition of Ag onto copper wires followed by modification with a polyfluorothiol (3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluoro-1-decanethiol, HDFT). Cutting the coated wires with a scalpel revealed hydrophilic tips which could support droplets whose maximum size was determined by the wire diameter. Typically, 230 μm wires were used to support 0.6 μL droplets. Evaporation of dilute melamine droplets gave solid deposits which could be observed by scanning electron microscopy (SEM) and Raman spectroscopy. The limit of detection for melamine using a two stage evaporation procedure was 1 × 10-6 mol dm-3. The physical appearance of dried droplets of sucrose and glucose showed that the samples retained significant amounts of water, even under high vacuum. Nonetheless, the Raman detection limits of sucrose and glucose were 5 × 10-4 and 2.5 × 10-3 mol dm-3, respectively, which is similar to the sensitivity reported for surface-enhanced Raman spectroscopy (SERS) detection of glucose. It was also possible to quantify the two sugars in mixtures at concentrations which were similar to those found in human blood through multivariate analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We explored the temporal and spatial variations in airborne Alternaria spore quantitative and phenological features in Europe using 23 sites with annual time series between 3 and 15 years. The study covers seven countries and four of the main biogeographical regions in Europe. The observations were obtained with Hirst-type spore traps providing time series with daily records. Site locations extend from Spain in the south to Denmark in the north and from England in the West to Poland in the East. The study is therefore the largest assessment ever carried out for Europe concerning Alternaria. Aerobiological data were investigated for temporal and spatial patterns in their start and peak season dates and their spore indices. Moreover, the effects of climate were checked using meteorological data for the same period, using a crop growth model. We found that local climate, vegetation patterns and management of landscape are governing parameters for the overall spore concentration, while the annual variations caused by weather are of secondary importance but should not be neglected. The start of the Alternaria spore season varies by several months in Europe, but the peak of the season is more synchronised in central northern Europe in the middle of the summer, while many southern sites have peak dates either earlier or later than northern Europe. The use of a crop growth model to explain the start and peak of season suggests that such methods could be useful to describe Alternaria seasonality in areas with no available observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cloud edge mixing plays an important role in the life cycle and development of clouds. Entrainment of subsaturated air affects the cloud at the microscale, altering the number density and size distribution of its droplets. The resulting effect is determined by two timescales: the time required for the mixing event to complete, and the time required for the droplets to adjust to their new environment. If mixing is rapid, evaporation of droplets is uniform and said to be homogeneous in nature. In contrast, slow mixing (compared to the adjustment timescale) results in the droplets adjusting to the transient state of the mixture, producing an inhomogeneous result. Studying this process in real clouds involves the use of airborne optical instruments capable of measuring clouds at the `single particle' level. Single particle resolution allows for direct measurement of the droplet size distribution. This is in contrast to other `bulk' methods (i.e. hot-wire probes, lidar, radar) which measure a higher order moment of the distribution and require assumptions about the distribution shape to compute a size distribution. The sampling strategy of current optical instruments requires them to integrate over a path tens to hundreds of meters to form a single size distribution. This is much larger than typical mixing scales (which can extend down to the order of centimeters), resulting in difficulties resolving mixing signatures. The Holodec is an optical particle instrument that uses digital holography to record discrete, local volumes of droplets. This method allows for statistically significant size distributions to be calculated for centimeter scale volumes, allowing for full resolution at the scales important to the mixing process. The hologram also records the three dimensional position of all particles within the volume, allowing for the spatial structure of the cloud volume to be studied. Both of these features represent a new and unique view into the mixing problem. In this dissertation, holographic data recorded during two different field projects is analyzed to study the mixing structure of cumulus clouds. Using Holodec data, it is shown that mixing at cloud top can produce regions of clear but humid air that can subside down along the edge of the cloud as a narrow shell, or advect down shear as a `humid halo'. This air is then entrained into the cloud at lower levels, producing mixing that appears to be very inhomogeneous. This inhomogeneous-like mixing is shown to be well correlated with regions containing elevated concentrations of large droplets. This is used to argue in favor of the hypothesis that dilution can lead to enhanced droplet growth rates. I also make observations on the microscale spatial structure of observed cloud volumes recorded by the Holodec.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of lake–atmosphere interactions was the main purpose of a 2014 summer experiment at Alqueva reservoir in Portugal. Near-surface fluxes of momentum, heat and mass [water vapour (H2O) and carbon dioxide (CO2)] were obtained with the new Campbell Scientific’s IRGASON Integrated Open-Path CO2/H2O Gas Analyser and 3D Sonic Anemometer between 2 June and 2 October. On average, the reservoir was releasing energy in the form of sensible and latent heat flux during the study period. At the end of the 75 d, the total evaporation was estimated as 490.26 mm. A high correlation was found between the latent heat flux and the wind speed (R = 0.97). The temperature gradient between air and water was positive between 12 and 21 UTC, causing a negative sensible heat flux, and negative during the rest of the day, triggering a positive sensible heat flux. The reservoir acted as a sink of atmospheric CO2 with an average rate of −0.026 mg m−2 s−1. However, at a daily scale we found an unexpected uptake between 0 and 9 UTC and almost null flux between 13 and 19 UTC. Potential reasons for this result are further discussed. The net radiation was recorded for the same period and water column heat storage was estimated using water temperature profiles. The energy balance closure for the analysed period was 81%. In-water solar spectral downwelling irradiance profiles were measured with a new device allowing measurements independent of the solar zenith angle, which enabled the computation of the attenuation coefficient of light in the water column. The average attenuation coefficient for the photosynthetically active radiation spectral region varied from 0.849 ± 0.025 m−1 on 30 July to 1.459 ± 0.007 m−1 on 25 September.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Canopy and aerodynamic conductances (gC and gA) are two of the key land surface biophysical variables that control the land surface response of land surface schemes in climate models. Their representation is crucial for predicting transpiration (λET) and evaporation (λEE) flux components of the terrestrial latent heat flux (λE), which has important implications for global climate change and water resource management. By physical integration of radiometric surface temperature (TR) into an integrated framework of the Penman?Monteith and Shuttleworth?Wallace models, we present a novel approach to directly quantify the canopy-scale biophysical controls on λET and λEE over multiple plant functional types (PFTs) in the Amazon Basin. Combining data from six LBA (Large-scale Biosphere-Atmosphere Experiment in Amazonia) eddy covariance tower sites and a TR-driven physically based modeling approach, we identified the canopy-scale feedback-response mechanism between gC, λET, and atmospheric vapor pressure deficit (DA), without using any leaf-scale empirical parameterizations for the modeling. The TR-based model shows minor biophysical control on λET during the wet (rainy) seasons where λET becomes predominantly radiation driven and net radiation (RN) determines 75 to 80 % of the variances of λET. However, biophysical control on λET is dramatically increased during the dry seasons, and particularly the 2005 drought year, explaining 50 to 65 % of the variances of λET, and indicates λET to be substantially soil moisture driven during the rainfall deficit phase. Despite substantial differences in gA between forests and pastures, very similar canopy?atmosphere "coupling" was found in these two biomes due to soil moisture-induced decrease in gC in the pasture. This revealed the pragmatic aspect of the TR-driven model behavior that exhibits a high sensitivity of gC to per unit change in wetness as opposed to gA that is marginally sensitive to surface wetness variability. Our results reveal the occurrence of a significant hysteresis between λET and gC during the dry season for the pasture sites, which is attributed to relatively low soil water availability as compared to the rainforests, likely due to differences in rooting depth between the two systems. Evaporation was significantly influenced by gA for all the PFTs and across all wetness conditions. Our analytical framework logically captures the responses of gC and gA to changes in atmospheric radiation, DA, and surface radiometric temperature, and thus appears to be promising for the improvement of existing land?surface?atmosphere exchange parameterizations across a range of spatial scales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Canopy and aerodynamic conductances (gC and gA) are two of the key land surface biophysical variables that control the land surface response of land surface schemes in climate models. Their representation is crucial for predicting transpiration (?ET) and evaporation (?EE) flux components of the terrestrial latent heat flux (?E), which has important implications for global climate change and water resource management. By physical integration of radiometric surface temperature (TR) into an integrated framework of the Penman?Monteith and Shuttleworth?Wallace models, we present a novel approach to directly quantify the canopy-scale biophysical controls on ?ET and ?EE over multiple plant functional types (PFTs) in the Amazon Basin. Combining data from six LBA (Large-scale Biosphere-Atmosphere Experiment in Amazonia) eddy covariance tower sites and a TR-driven physically based modeling approach, we identified the canopy-scale feedback-response mechanism between gC, ?ET, and atmospheric vapor pressure deficit (DA), without using any leaf-scale empirical parameterizations for the modeling. The TR-based model shows minor biophysical control on ?ET during the wet (rainy) seasons where ?ET becomes predominantly radiation driven and net radiation (RN) determines 75 to 80?% of the variances of ?ET. However, biophysical control on ?ET is dramatically increased during the dry seasons, and particularly the 2005 drought year, explaining 50 to 65?% of the variances of ?ET, and indicates ?ET to be substantially soil moisture driven during the rainfall deficit phase. Despite substantial differences in gA between forests and pastures, very similar canopy?atmosphere "coupling" was found in these two biomes due to soil moisture-induced decrease in gC in the pasture. This revealed the pragmatic aspect of the TR-driven model behavior that exhibits a high sensitivity of gC to per unit change in wetness as opposed to gA that is marginally sensitive to surface wetness variability. Our results reveal the occurrence of a significant hysteresis between ?ET and gC during the dry season for the pasture sites, which is attributed to relatively low soil water availability as compared to the rainforests, likely due to differences in rooting depth between the two systems. Evaporation was significantly influenced by gA for all the PFTs and across all wetness conditions. Our analytical framework logically captures the responses of gC and gA to changes in atmospheric radiation, DA, and surface radiometric temperature, and thus appears to be promising for the improvement of existing land?surface?atmosphere exchange parameterizations across a range of spatial scales.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El Niño South Oscillation (ENSO) is one climatic phenomenon related to the inter-annual variability of global meteorological patterns influencing sea surface temperature and rainfall variability. It influences human health indirectly through extreme temperature and moisture conditions that may accelerate the spread of some vector-borne viral diseases, like dengue fever (DF). This work examines the spatial distribution of association between ENSO and DF in the countries of the Americas during 1995-2004, which includes the 1997-1998 El Niño, one of the most important climatic events of 20(th) century. Data regarding the South Oscillation index (SOI), indicating El Niño-La Niña activity, were obtained from Australian Bureau of Meteorology. The annual DF incidence (AIy) by country was computed using Pan-American Health Association data. SOI and AIy values were standardised as deviations from the mean and plotted in bars-line graphics. The regression coefficient values between SOI and AIy (rSOI,AI) were calculated and spatially interpolated by an inverse distance weighted algorithm. The results indicate that among the five years registering high number of cases (1998, 2002, 2001, 2003 and 1997), four had El Niño activity. In the southern hemisphere, the annual spatial weighted mean centre of epidemics moved southward, from 6° 31' S in 1995 to 21° 12' S in 1999 and the rSOI,AI values were negative in Cuba, Belize, Guyana and Costa Rica, indicating a synchrony between higher DF incidence rates and a higher El Niño activity. The rSOI,AI map allows visualisation of a graded surface with higher values of ENSO-DF associations for Mexico, Central America, northern Caribbean islands and the extreme north-northwest of South America.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We reported here for the first time that triboelectric charges on PET sheets can be used to seal and control the flow rate in paper-based devices. The proposed method exhibits simplicity and low cost, provides reversible sealing and minimizes the effect of sample evaporation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The covering of the soil is an agricultural practice that intends to control the harmful herbs, to reduce the losses of water by evaporation of the soil, and to facilitate the harvest and the commercialization, once the product is cleaner and healthier. However, when the soil is covered important microclimatic parameters are also altered, and consequently the germination of seeds, the growth of roots, the absorption of water and nutrients, the metabolic activity of the plants and the carbohydrates storage. The current trial intended to evaluate the effect of soil covering with blue colored film on consumptive water-use in a lettuce crop (Lactuca sativa, L.). The experiment was carried out in a plastic greenhouse in Araras - São Paulo State, Brazil from March 3rd, 2001 to May 5th, 2001. The consumptive water-use was measured through two weighing lysimeter installed inside the greenhouse. Crop spacing was 0.25 m x 0.25 m and the color of the film above soil was blue. Leaf area index (IAF), was measured six times (7; 14; 21; 28; 35; 40 days after transplant) and the water-use efficiency (EU) was measured at the end. The experimental design was subdivided portions with two treatments, bare soil and covered soil. The average consumptive water-use was 4.17 mm day-1 to the bare soil treatment and 3.11 mm day-1 to the covered soil treatment. The final leaf area index was 25.23 to the bare soil treatment and 24.39 to the covered soil treatment, and there was no statistical difference between then.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the main objectives of applying edible coatings on fruits surface is to create a protective film to reduce weight loss due to evaporation and transpiration and also to decrease the risk of fruit rot caused by environmental contamination, in order to improve the visual aspect. Therefore, it is possible to increase shelf life, and decrease post harvest losses. Persimmon is a much appreciated fruit, with high potential for export, but sensitive to handling and storage. This study aimed to evaluate the effect of applying the edible coating Megh Wax ECF-124 (18% of active composts, consisting of emulsion of carnauba wax, anionic surfactant, preservative and water) produced by Megh Industry and Commerce Ltda in three different concentrations (25, 50 and 100%) on post harvest quality of 'Fuyu' persimmon stored for 14 days. The attributes evaluated for quality were: firmness, pH, acidity, soluble solids, weight loss and color. The results showed that application of carnauba wax in different concentrations was effective on decreasing weight loss of persimmon cv. Fuyu and maintenance of color aspects. Treatment at lower concentration, 25%, showed lower rate of discharge, but high concentrations showed lower values of mass loss. Carnauba wax application showed a high potential for use on postharvest conservation, and can be applied together with other technologies, helping to maintain quality for export.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Micropartículas produzidas a partir de polímeros sintéticos têm sido amplamente utilizadas na área farmacêutica para encapsulação de princípios ativos. Essas micropartículas apresentam as vantagens de proteção do princípio ativo, mucoadesão e gastrorresistência, melhor biodisponibilidade e maior adesão do paciente ao tratamento. Além disso, utiliza menores quantidade de princípio ativo para obtenção do efeito terapêutico proporcionando diminuição dos efeitos adversos locais, sistêmicos e menor toxidade. Os polímeros sintéticos empregados na produção das micropartículas são classificados biodegradáveis ou não biodegradáveis, sendo os biodegradáveis mais utilizados por não necessitam ser removidos cirurgicamente após o término de sua ação. A produção das micropartículas poliméricas sintéticas para encapsulação tanto de ativos hidrofílicos quanto hidrofóbicos pode ser emulsificação por extração e/ou evaporação do solvente; coacervação; métodos mecânicos e estão revisados neste artigo evidenciando as vantagens, desvantagens e viabilidade de cada metodologia. A escolha da metodologia e do polímero sintético a serem empregados na produção desse sistema dependem da aplicação terapêutica requerida, bem como a simplicidade, reprodutibilidade e factibilidade do aumento de escala da produção.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJETIVO: A prática de exercícios físicos, devido à produção inerente de calor, pode conduzir à desidratação. A maioria dos estudos que abordam os riscos da desidratação e fornecem recomendações de reposição hídrica é direcionada a indivíduos adultos residentes em regiões de clima temperado, porém, em regiões tropicais, pouco é conhecido sobre as necessidades de reposição hídrica em crianças fisicamente ativas. Esta revisão discute as recomendações para esta população e estabelece os riscos da prática esportiva em ambiente de clima tropical. FONTES DE DADOS: Análise sistemática com levantamento da literatura nacional (SciELO) e internacional (Medline) de artigos publicados entre 1972 e 2009, com os seguintes descritores isolados ou em combinação: hidratação, crianças, desidratação e reposição hídrica. Foram selecionados artigos publicados nas línguas portuguesa e inglesa. SÍNTESES DE DADOS: Observou-se que há riscos de desidratação e possível desenvolvimento de um quadro de hipertermia principalmente se as crianças são submetidas a condições climáticas desfavoráveis sem reposição hídrica adequada. O principal fator desencadeante da hipertermia é a menor adaptação das crianças aos extremos de temperatura, em comparação aos adultos, por possuírem área maior de superfície corporal e capacidade menor de termorregulação por evaporação. CONCLUSÕES: Conhecidos os fatores intervenientes da desidratação, a melhor recomendação, perante uma condição climática sabidamente desfavorável, é estabelecer um plano impositivo de hidratação com bebida com sabor e acréscimo de carboidratos e sódio, evitando-se uma perda hídrica significativa, diminuição da performance e, principalmente, com o objetivo de reduzir os riscos à saúde impostos pela hipertermia e desidratação a crianças fisicamente ativas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este artigo discute um modelo de previsão combinada para a realização de prognósticos climáticos na escala sazonal. Nele, previsões pontuais de modelos estocásticos são agregadas para obter as melhores projeções no tempo. Utilizam-se modelos estocásticos autoregressivos integrados a médias móveis, de suavização exponencial e previsões por análise de correlações canônicas. O controle de qualidade das previsões é feito através da análise dos resíduos e da avaliação do percentual de redução da variância não-explicada da modelagem combinada em relação às previsões dos modelos individuais. Exemplos da aplicação desses conceitos em modelos desenvolvidos no Instituto Nacional de Meteorologia (INMET) mostram bons resultados e ilustram que as previsões do modelo combinado, superam na maior parte dos casos a de cada modelo componente, quando comparadas aos dados observados.