975 resultados para Evanescent wave fibre optic sensors
Resumo:
We demonstrate a bi-metal coating (platinum and gold or silver) localised surface plasmon resonance fibre device that produces an index spectral sensitivity of over 11,000 nm/RIU, yielding an index resolution of 5×10-6in the aqueous index regime, consisting of a structured multi-layered thin film on D-shaped fibre. © 2014 SPIE.
Resumo:
An array of in-line curvature sensors on a garment is used to monitor the thoracic and abdominal movements of a human during respiration. The results are used to obtain volumetric changes of the human torso in agreement with a spirometer used simultaneously at the mouth. The array of 40 in-line fiber Bragg gratings is used to produce 20 curvature sensors at different locations, each sensor consisting of two fiber Bragg gratings. The 20 curvature sensors and adjoining fiber are encapsulated into a low-temperature-cured synthetic silicone. The sensors are wavelength interrogated by a commercially available system from Moog Insensys, and the wavelength changes are calibrated to recover curvature. A three-dimensional algorithm is used to generate shape changes during respiration that allow the measurement of absolute volume changes at various sections of the torso. It is shown that the sensing scheme yields a volumetric error of 6%. Comparing the volume data obtained from the spirometer with the volume estimated with the synchronous data from the shape-sensing array yielded a correlation value 0.86 with a Pearson's correlation coefficient p <0.01.
Resumo:
A novel all-fibre cavity ring down spectroscopy technique is demonstrated where a tilted fibre Bragg grating in the cavity provides sensitivity to surrounding refractive index. A decay time of 450ns was attained when sensing water.
Resumo:
The fabrication and characterisation of Long Period Gratings in fibre tapers is presented alongside supporting theory. The devices possess a high sensitivity to the index of aqueous solutions due to an observed spectral bifurcation effect.
Resumo:
We report experimental measurements of the strain and temperature sensitivity of the optical phase in a singlemode polymer optical fibre. These values were obtained by measuring optical path length change using a Mach-Zender interferometer.
Resumo:
Long period gratings in two types of photonic crystal fibre have been studied. The gratings display negligible temperature sensitivity but useful sensitivity to other measurands. Theoretical modelling suggests that unusual phase matching conditions apply.
Resumo:
A series of in-line curvature sensors on a garment are used to monitor the thoracic and abdominal movements of a human during respiration. These results are used to obtain volumetric tidal changes of the human torso showing reasonable agreement with a spirometer used simultaneously to record the volume at the mouth during breathing. The curvature sensors are based upon long period gratings written in a progressive three layered fibre that are insensitive to refractive index changes. The sensor platform consists of the long period grating laid upon a carbon fibre ribbon, which is encapsulated in a low temperature curing silicone rubber. An array of sensors is also used to reconstruct the shape changes of a resuscitation manikin during simulated respiration. The data for reconstruction is obtained by two methods of multiplexing and interrogation: firstly using the transmission spectral profile of the LPG's attenuation bands measured using an optical spectrum analyser; secondly using a derivative spectroscopy technique.
Resumo:
We investigate the use of an arrayed waveguide grating (AWG) to interrogate both fibre Bragg grating (FBG) and interferometric sensors. A broadband light source is used to illuminate both the FBG and interferometric sensors. Reflected spectral information is directed to an AWG with integral photodetectors providing 40 electrical outputs. To interrogate interferometric sensors we investigated the dual wavelength technique to measure the distance of a Fabry-Perot cavity, which produced a maximum unambiguous range of 1440μm with an active sensor. Three methods are described to interrogate FBG sensors. The first technique makes use of the reflected light intensity in an AWG channel passband from a narrow bandwidth grating, giving a usable range of 500με and a dynamic strain resolution of 96nε/√Hz at 30Hz. The second approach utilises wide gratings larger than the channel spacing of the AWG; by monitoring the intensity present in corresponding AWG channels an improved range of 1890με was achieved. The third method improves the dynamic range by utilising a heterodyne approach based on interferometric wavelength shift detection providing a dynamic strain resolution of 17nε/√Hz at 30Hz.
Resumo:
We report experimental measurements of the reflection spectra of Bragg gratings inscribed in 4-core fibres under transverse loading. Broadening and splitting of the Bragg peaks from each core are observed as a function of load and fibre orientation.