858 resultados para Equilibrium Poly(hema-co-thfma) Hydrogels


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This present study compares the efficacy of microsphere formulations, and their method of antigen presentation, for the delivery of the TB sub-unit vaccine antigen, Ag85B-ESAT-6. Microspheres based on poly(lactide-co-glycolide) (PLGA) and chitosan incorporating dimethyldioctadecylammonium bromide (DDA) were prepared by either the w/o/w double emulsion method (entrapped antigen) or the o/w single emulsion method (surface bound antigen), and characterised for their physico-chemical properties and their ability to promote an immune response to Ag85B-ESAT-6. The method of preparation, and hence method of antigen association, had a pronounced effect on the type of immune response achieved from the microsphere formulations, with surface bound antigen favouring a humoural response, whereas entrapped antigen favoured a cellular response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pure poly(lactide-co-glycolide) and polystyrene surfaces are not very suitable to support cell adhesion/ spreading owing to their hydrophobic nature and low surface energy. The interior surfaces of large porous 3D scaffolds were modified and activated using radio-frequency, low-pressure air plasma. An increase in the wettability of the surface was observed after exposure to air plasma, as indicated by the decrease in the contact angles of the wet porous system. The surface composition of the plasma-treated polymers was studied using X-ray photoelectron spectroscopy. pH-dependent zeta-potential measurements confirm the presence of an increased number of functional groups. However, the plasma-treated surfaces have a less acidic character than the original polymer surfaces as seen by a shift in their isoelectric point. Zeta-potential, as well as contact angle measurements, on 3D scaffolds confirm that plasma treatment is a useful tool to modify the surface properties throughout the interior of large scaffolds. © 2008 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analysis of protein function in a cellular context ideally requires physiologically representative levels of that protein. Thus conventional nucleic acid-based transfection methods are far from ideal owing to the over expression that generally results. Likewise fusions with protein transduction domains can be problematic whilst delivery via liposomes/nanoparticles typically results in endosomal localisation. Recently polymer microspheres have been reported to be highly effective at delivering proteins into cells and thus provide a viable new alternative for protein delivery (protein transduction). Herein we describe the successful delivery of active ribonuclease A into HeLa cells via novel polymer core-silica shell microspheres. Specifically, poly(styrene-co-vinylbenzylisothiouronium chloride) core particles, generated by dispersion polymerisation, were coated with a poly(styrene-co-trimethoxysilylpropyl methacrylate) shell. The resultant core-shell morphology was characterised by transmission electron, scanning electron and fluorescence confocal microscopies, whilst size and surface charge was assessed by dynamic light scattering and zeta-potential measurements, respectively. Subsequently ribonuclease A was coupled to the microspheres using simple carbodiimide chemistry. Gel electrophoresis confirmed and quantified the activity of the immobilised enzyme against purified HeLa RNA. Finally, the polymer-protein particles were evaluated as protein-transduction vectors in vitro to deliver active ribonuclease A to HeLa cells. Cellular uptake of the microspheres was successful and resulted in reduced levels of both intracellular RNA and cell viability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(styrene-co-maleic anhydride) (PSMA) based copolymers are known to undergo conformational transition in response to environmental stimuli. This smart behaviour makes it possible to mimic the behaviour of native apoproteins. The primary aim of this study was to develop a better understanding of the structure-property relationships of various PSMA-based copolymers sought. The work undertaken in this thesis has revealed that the responsive behaviour of PSMA-based copolymers can be tailored by varying the molecular weight, hydrophobic (styrene) and hydrophilic (maleic acid) balance, and more so in the presence of additional hydrophobic, mono-partial ester moieties. Novel hydrophilic and hydrophobic synthetic surfactant protein analogues have successfully been prepared. These novel lipid solubilising agents possess a broad range of HLB (hydrophilic-lipophilic balance) values that have been estimated. NMR spectroscopy was utilised to confirm the structures for PSMA-based copolymers sought and proved useful in furthering understanding of the structure-property relationships of PSMA-based copolymers. The association of PSMA with the polar phospholipid, 2-dilauryl-sn-glycero-3- phosphocholine (DLPC) produces polymer-lipid complexes analogous to lipoprotein assemblies present in the blood plasma. NMR analysis reveals that the PSMA-based copolymers are not perfectly alternating. Regio-irregular structures, atactic and random monomer sequence distribution have been identified for all materials studied. Novel lipid solubilising agents (polyanionic surfactants) have successfully been synthesised from a broad range of PSMA-based copolymers with desired estimated HLB values that interact with polar phospholipids (DLPC/DPPC) uniquely. Very low static and dynamic surface tensions have been observed via the du Noϋy ring method and Langmuir techniques and correlate well with the estimated HLB values. Synthetic protein-lipid analogues have been successfully synthesised, that mimic the unique surface properties of native biological lubricants without the use of solvents. The novel PSMA-DLPC complexes have successfully been combined with hyaluronan (hyaluronic acid, HA). Today, the employment of HA is economically feasible, because it is readily available from bacterial fermentation processes in a thermally stable form - HyaCare®. The work undertaken in this thesis highlights the usage of HA in biolubrication applications and how this can be optimised and thus justified by carefully selecting the biological source, concentration, molecular weight, purity and most importantly by combining it with compatible boundary lubricating agents (polar phospholipids). Experimental evidence supports the belief that the combined HA and PSMA-DLPC complexes provide a balance of rheological, biotribological and surface properties that are composition dependent, and show competitive advantage as novel synthetic biological lubricants (biosurfactants).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

G-protein-coupled receptors (GPCRs) form the largest class of membrane proteins and are an important target for therapeutic drugs. These receptors are highly dynamic proteins sampling a range of conformational states in order to fulfil their complex signalling roles. In order to fully understand GPCR signalling mechanisms it is necessary to extract the receptor protein out of the plasma membrane. Historically this has universally required detergents which inadvertently strip away the annulus of lipid in close association with the receptor and disrupt lateral pressure exerted by the bilayer. Detergent-solubilized GPCRs are very unstable which presents a serious hurdle to characterization by biophysical methods. A range of strategies have been developed to ameliorate the detrimental effect of removing the receptor from the membrane including amphipols and reconstitution into nanodics stabilized by membrane scaffolding proteins (MSPs) but they all require exposure to detergent. Poly(styrene-co-maleic acid) (SMA) incorporates into membranes and spontaneously forms nanoscale poly(styrene-co-maleic acid) lipid particles (SMALPs), effectively acting like a 'molecular pastry cutter' to 'solubilize' GPCRs in the complete absence of detergent at any stage and with preservation of the native annular lipid throughout the process. GPCR-SMALPs have similar pharmacological properties to membrane-bound receptor, exhibit enhanced stability compared with detergent-solubilized receptors and being non-proteinaceous in nature, are fully compatible with downstream biophysical analysis of the encapsulated GPCR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(lactide-co-glycolide), or PLGA, microspheres offer a widely-studied biodegradable option for controlled release of therapeutics. An array of fabrication methodologies have been developed to produce these microspheres with the capacity to encapsulate therapeutics of various types; and produce microspheres of a wide range of sizes for different methods of delivery. The encapsulation, stability, and release profiles of therapeutic release based on physical and thermodynamic properties has also been studied and modeled to an extent. Much research has been devoted to tailoring formulations for improved therapeutic encapsulation and stability as well as selective release profiles. Despite the breadth of available research on PLGA microspheres, further analysis of fundamental principles regarding the microsphere degradation, formation, and therapeutic encapsulation is necessary. This work aims to examine additional fundamental principles related to PLGA microsphere formation and degradation from solvent-evaporation of preformed polymer. In particular, mapping the development of the acidic microenvironment inside the microsphere during degradation and erosion is discussed. Also, the effect of macromolecule size and conformation is examined with respect to microsphere diameter and PLGA molecular weight. Lastly, the effects of mechanical shearing and protein exposure to aqueous media during microsphere formation are examined. In an effort to better understand the acidic microenvironment development across the microsphere diameter, pH sensitive dye conjugated to protein that undergoes conformational change at different acidic pH values was encapsulated in PLGA microspheres of diameters ranging from 40 µm to 80 µm, and used in conjunction with fluorescence resonance energy transfer to measure the radial pH change in the microspheres. Qualitative analysis of confocal micrographs was used to correlate fluorescence intensity with pH value, and obtain the radial pH across the center of the microsphere. Therapeutic encapsulation and release from polymeric microspheres is governed by an interconnected variety of factors, including the therapeutic itself. The globular protein bovine serum albumin, and the elongated and significantly smaller enzyme, lysozyme, were encapsulated in PLGA microspheres ranging from 40 µm to 80 µm in diameter. The initial surface morphology upon microsphere formation, release profiles, and microsphere erosion characteristics were explored in an effort to better understand the effect of protein size, conformation, and known PLGA interaction on the formation and degradation of PLGA microspheres and macromolecule release, with respect to PLGA molecular weight and microsphere diameter. In addition to PLGA behavior and macromolecule behavior, the effect of mechanical stresses during fabrication was examined. Two similar solvent extraction techniques were compared for the fabrication of albumin loaded microspheres. In particular, the homogeneity of the microspheres as well as capacity to retain encapsulated albumin were compared. This preliminary study paves the way for a more rigorous treatment of the effect of mechanical forces present in popular microsphere fabrication. Several factors affecting protein release from PLGA microspheres are examined herein. The technique explored for spatial resolution of the pH inside the microsphere proved mildly effective in producing a reliable method of mapping microsphere pH changes. However, notable trends with respect to microsphere size, PLGA molecular weight, and microsphere porosity were observed. Proposed methods of improving spatial resolution of the acidic microenvironment are also provided. With respect to microsphere formation, studies showed that albumin and lysozyme had little effect on the internal homogeneity of the microsphere. Rather, ionic interactions with PLGA played a more significant role in the encapsulation and release of each macromolecule. Studies also showed that higher instances of mechanical stress led to less homogeneous microspheres with lower protein encapsulation. This suggests that perhaps instead of or in addition to modifying the microsphere formation formulation, the fabrication technique itself should be more closely considered in achieving homogeneous microspheres with desired loading.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese (doutorado)—Universidade de Brasília, Instituto de Química, Curso de Pós-Graduação em Química, 2016.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A systematic approach was developed to investigate the stability of gentamicin sulfate (GS) and GS/poly (lactic-co-glycolic acid) (PLGA) coatings on hydroxyapatite surfaces. The influence of environmental factors (light, humidity, oxidation and heat) upon degradation of the drug in the coatings was investigated using liquid chromatography with evaporative light scattering detection and mass spectrometry. GS coated rods were found to be stable across the range of environments assessed, with only an oxidizing atmosphere resulting in significant changes to the gentamicin composition. In contrast, rods coated with GS/PLGA were more sensitive to storage conditions with compositional changes being detected after storage at 60 °C, 75% relative humidity or exposure to light. The effect of γ-irradiation on the coated rods was also investigated and found to have no significant effect. Finally, liquid chromatography–mass spectrometry analysis revealed that known gentamines C1, C1a and C2 were the major degradants formed. Forced degradation of gentamicin coatings did not produce any unexpected degradants or impurities.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We characterized hydrogels, prepared from aqueous blends of poly(methyl vinyl ether-co-maleic acid) (PMVE/MA) and poly(ethylene glycol) (PEG 10,000 Daltons) containing a pore-forming agent (sodium bicarbonate, NaHCO ). Increase in NaHCO content increased the equilibrium water content (EWC) and average molecular weight between crosslinks (M ) of hydrogels. For example, the %EWC was 731, 860, 1109, and 7536% and the M was 8.26, 31.64, 30.04, and 3010.00 × 10 g/mol for hydrogels prepared from aqueous blends containing 0, 1, 2, and 5% w/w of NaHCO , respectively. Increase in NaHCO content also resulted in increased permeation of insulin. After 24 h, percentage permeation was 0.94, 3.68, and 25.71% across hydrogel membranes prepared from aqueous blends containing 0, 2, and 5% w/w of NaHCO , respectively. Hydrogels containing the pore-forming agent were fabricated into microneedles (MNs) for transdermal drug delivery applications by integrating the MNs with insulin-loaded patches. It was observed that the mean amount of insulin permeating across neonatal porcine skin in vitro was 20.62% and 52.48% from hydrogel MNs prepared from aqueous blends containing 0 and 5% w/w of NaHCO . We believe that these pore-forming hydrogels are likely to prove extremely useful for applications in transdermal drug delivery of biomolecules. © 2012 Wiley Periodicals, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Poly(vinyl alcohol) /poly(N-vinyl pyrrolidone) (PVP)/chitosan hydrogels were prepared by a low-temperature treatment and subsequent Co-60 -gamma-ray irradiation and then were medicated with ciprofloxacin lactate (an antibiotic) and chitosan oligomer (molecular weight = 3000 g/mol). The gel content, swelling ratio, tensile strength, and crystallinity of the hydrogels were determined. The effects of the chitosan molecular weight, the low-temperature treatment procedure, and the radiation dosage on the hydrogel properties were examined. The molecular weight of chitosan was lowered by the irradiation, but its basic polysaccharide structure was not destroyed. Repeating the low-temperature treatment and gamma-ray irradiation caused effective physical crosslinking and chemical crosslinking, respectively, and contributed to the mechanical strength of the final hydrogels. The incorporation of PVP and chitosan resulted in a significant improvement in the equilibrium swelling ratio. and elongation ratio of the prepared hydrogels. The ciprofloxacin lactate and chitosan oligomer were soaked into the hydrogels. Their in vitro release behaviors were examined, and they were found to follow diffusion-controlled kinetics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

he influence of poly(ethylene glycol) (PEG) plasticiser content and molecular weight on the physicochemical properties of films cast from aqueous blends of poly(methyl vinyl ether-co-maleic acid) was investigated using thermal analysis, swelling studies, scanning electron microscopy (SEM) and attenuated total reflectance (ATR)-Fourier transform infrared (FTIR) spectroscopy. FTIR spectroscopy revealed a shift of the CO peak from 1708 to 1731 cm-1, indicating that an esterification reaction had occurred upon heating, thus producing crosslinked films. Higher molecular weight PEGs (10,000 and 1000 Da, respectively), having greater chain length, producing hydrogel networks with lower crosslink densities and higher average molecular weight between two consecutive crosslinks. Accordingly, such materials exhibited higher swelling rates. Hydrogels crosslinked with a low molecular weight PEG (PEG 200) showed rigid networks with high crosslink densities and, therefore, lower swelling rates. Polymer:plasticizer ratio alteration did not yield any discernable patterns, regardless of the method of analysis. The polymer–water interaction parameter (?) increased with increases in the crosslink density. SEM studies showed that porosity of the crosslinked films increased with increasing PEG MW, confirming what had been observed with swelling studies and thermal analysis, that the crosslink density must be decreased as the Mw of the crosslinker is increased. Hydrogels containing PMVE/MA/PEG 10,000 could be used for rapid delivery of drug, due to their low crosslink density. Moderately crosslinked PMVE/MA/PEG 1000 hydrogels or highly crosslinked PMVE/MA/PEG 200 systems could then be used in controlling the drug delivery rates. We are currently evaluating these systems, both alone and in combination, for use in sustained release drug delivery devices.