966 resultados para Epilepsy, Rolandic
Resumo:
Kindling, an animal model of epilepsy wherein seizures are induced by subcortical electrical stimulation, results in the upregulation of neurotrophin mRNA and protein in the adult rat forebrain and causes mossy fiber sprouting in the hippocampus. Intraventricular infusion of a synthetic peptide mimic of a nerve growth factor domain that interferes with the binding of neurotrophins to their receptors resulted in significant retardation of kindling and inhibition of mossy fiber sprouting. These findings suggest a critical role for neurotrophins in both kindling and kindling-induced synaptic reorganization.
Resumo:
Multifunctional Ca2+/calmodulin-dependent protein kinase II (CaMK) phosphorylates proteins pivotally involved in diverse neuronal processes and thereby coordinates cellular responses to external stimuli that regulate intracellular Ca2+ [Hanson, P. I. & Schulman, H. (1992) Annu. Rev. Biochem. 61, 559-664]. Despite extensive study, the impact of this enzyme on control of the excitability of neuron populations in the mammalian nervous system in situ is unknown. To address this question, we studied transgenic mice carrying a null mutation (-/-) for the alpha subunit of CaMK. In contrast to wild-type littermates, null mutants exhibit profound hyperexcitability, evident in epileptic seizures involving limbic structures including the hippocampus. No evidence of increased excitability was detected in mice carrying null mutations of the gamma isoform of protein kinase C, underscoring the specificity of the effect of CaMK. CaMK plays a powerful and previously underappreciated role in control of neuronal excitability in the mammalian nervous system. These insights have important implications for analyses of mechanisms of epilepsy and, perhaps, learning and memory.
Resumo:
The syndrome known as nocturnal frontal lobe epilepsy is recognized worldwide and has been studied in a wide range of clinical and scientific settings (epilepsy, sleep medicine, neurosurgery, pediatric neurology, epidemiology, genetics). Though uncommon, it is of considerable interest to practicing neurologists because of complexity in differential diagnosis from more common, benign sleep disorders such as parasomnias, or other disorders like psychogenic nonepileptic seizures. Moreover, misdiagnosis can have substantial adverse consequences on patients' lives. At present, there is no consensus definition of this disorder and disagreement persists about its core electroclinical features and the spectrum of etiologies involved. To improve the definition of the disorder and establish diagnostic criteria with levels of certainty, a consensus conference using formal recommended methodology was held in Bologna in September 2014. It was recommended that the name be changed to sleep-related hypermotor epilepsy (SHE), reflecting evidence that the attacks are associated with sleep rather than time of day, the seizures may arise from extrafrontal sites, and the motor aspects of the seizures are characteristic. The etiology may be genetic or due to structural pathology, but in most cases remains unknown. Diagnostic criteria were developed with 3 levels of certainty: witnessed (possible) SHE, video-documented (clinical) SHE, and video-EEG-documented (confirmed) SHE. The main research gaps involve epidemiology, pathophysiology, treatment, and prognosis.
Resumo:
OBJECTIVE To investigate effects of interictal epileptic activity (IEA) and antiepileptic drugs (AEDs) on reactivity and aspects of the fitness to drive for epilepsy patients. METHODS Forty-six adult patients with demonstration of focal or generalized bursts of IEA in electroencephalography (EEG) readings within 1 year prior to inclusion irrespective of medication performed a car driving computer test or a single light flash test (39 patients performed both). Reaction times (RTs), virtual crashes, or lapses (RT ≥ 1 s in the car or flash test) were measured in an IEA burst-triggered fashion during IEA and compared with RT-measurements during unremarkable EEG findings in the same session. RESULTS IEA prolonged RTs both in the flash and car test (p < 0.001) in individual patients up to 200 ms. Generalized IEA with spike/waves (s/w) had the largest effect on RT prolongation (p < 0.001, both tests), whereas mean RT during normal EEG, age, gender, and number of AEDs had no effect. The car test was better than the flash test in detecting RT prolongations (p = 0.030). IEA increased crashes/lapses >26% in sessions with generalized IEA with s/w. The frequency of IEA-associated RT >1 s exceeded predictions (p < 0.001) based on simple RT shift, suggesting functional impairment beyond progressive RT prolongation by IEA. The number of AEDs correlated with prolonged RTs during normal EEG (p < 0.021) but not with IEA-associated RT prolongation or crashes/lapses. SIGNIFICANCE IEA prolonged RTs to varying extents, dependent on IEA type. IEA-associated RTs >1 s were more frequent than predicted, suggesting beginning cerebral decompensation of visual stimulus processing. AEDs somewhat reduced psychomotor speed, but it was mainly the IEA that contributed to an excess of virtual accidents.
Resumo:
Mode of access: Internet.
Resumo:
Includes bibliographies.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Translation of two memoirs: Anatomisch physiologisch onderzoek over het fijnere zamenstel en de werking van het ruggemerg, published 1854, and Over het fijnere zamenstel en de werking van het verlangde ruggemerg en over de naaste oorzaak van epilepsie en hare rationele behandeling, published 1858.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.