992 resultados para Environments for zonal cartilage tissue engineerin


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a new approach to improving the effectiveness of autonomous systems that deal with dynamic environments. The basis of the approach is to find repeating patterns of behavior in the dynamic elements of the system, and then to use predictions of the repeating elements to better plan goal directed behavior. It is a layered approach involving classifying, modeling, predicting and exploiting. Classifying involves using observations to place the moving elements into previously defined classes. Modeling involves recording features of the behavior on a coarse grained grid. Exploitation is achieved by integrating predictions from the model into the behavior selection module to improve the utility of the robot's actions. This is in contrast to typical approaches that use the model to select between different strategies or plays. Three methods of adaptation to the dynamic features of the environment are explored. The effectiveness of each method is determined using statistical tests over a number of repeated experiments. The work is presented in the context of predicting opponent behavior in the highly dynamic and multi-agent robot soccer domain (RoboCup).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Films of piezoelectric PVDF and P(VDF-TrFE) were exposed to vacuum UV (115-300 nm VUV) and -radiation to investigate how these two forms of radiation affect the chemical, morphological, and piezoelectric properties of the polymers. The extent of crosslinking was almost identical in both polymers after -irradiation, but surprisingly, was significantly higher for the TrFE copolymer after VUV-irradiation. Changes in the melting behavior were also more significant in the TrFE copolymer after VUV-irradiation due to both surface and bulk crosslinking, compared with only surface crosslinking for the PVDF films. The piezoelectric properties (measured using d33 piezoelectric coefficients and D-E hysteresis loops) were unchanged in the PVDF homopolymer, while the TrFE copolymer exhibited more narrow D-E loops after exposure to either - or VUV-radiation. The more severe damage to the TrFE copolymer in comparison with the PVDF homopolymer after VUV-irradiation is explained by different energy deposition characteristics. The short wavelength, highly energetic photons are undoubtedly absorbed in the surface layers of both polymers, and we propose that while the longer wavelength components of the VUV-radiation are absorbed by the bulk of the TrFE copolymer causing crosslinking, they are transmitted harmlessly in the PVDF homopolymer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(vinylidene fluoride) and copolymers of vinylidene fluoride with hexafluoropropylene, trifluoroethylene and chlorotrifluoroethylene have been exposed to gamma irradiation in vacuum, up to doses of 1MGy under identical conditions, to obtain a ranking of radiation sensitivities. Changes in the tensile properties, crystalline melting points,heats of fusion, gel contents and solvent uptake factors were used as the defining parameters. The initial degree of crystallinity and film processing had the greatest influence on relative radiation damage, although the cross-linked network features were almost identical in their solvent swelling characteristics, regardless of the comonomer composition or content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of atomic oxygen (AO) and vacuum UV radiation simulating low Earth orbit conditions on two commercially available piezoelectric polymer films, poly(vinylidene fluoride) (PVDF) and poly(vinylidene fluoride-trifluoroethylene) P(VDF-TrFE), have been studied. Surface erosion and pattern development are significant for both polymers. Erosion yields were determined as 2.8 � 10�24 cm3/atom for PVDF and 2.5 � 10�24 cm3/atom for P(VDF-TrFE). The piezoelectric properties of the residual material of both polymers were largely unchanged after exposure, although a slight shift in the Curie transition of the P(VDF-TrFE) was observed. A lightly cross-linked network was formed in the copolymer presumably because of penetrating vacuum ultraviolet (VUV) radiation, while the homopolymer remained uncross-linked. These differences were attributed to varying degrees of crystallinity and potentially greater absorption, and hence damage, of VUV radiation in P(VDFTrFE) compared with PVDF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Smart materials, such as thin-film piezoelectric polymers, are interesting for potential applications on Gossamer spacecraft. This investigation aims to predict the performance and long-term stability of the piezoelectric properties of poly(vinylidene fluoride) (PVDF) and its copolymers under conditions simulating the low-Earthorbit environment. To examine the effects of temperature on the piezoelectric properties of PVDF, poly(vinylidenefluoride-co-trifluoroethylene), and poly(vinylidenefluoride-cohexafluoropropylene), the d33 piezoelectric coefficients were measured up to 160 8C, and the electric displacement/electric field (D–E) hysteresis loops were measured from �80 to þ110 8C. The room-temperature d33 coefficient of PVDF homopolymer films, annealed at 50, 80, and 125 8C, dropped rapidly within a few days of thermal exposure and then remained unchanged. In contrast, the TrFE copolymer exhibited greater thermal stability than the homopolymer, with d33 remaining almost unchanged up to 125 8C. The HFP copolymer exhibited poor retention of d33 at temperatures above 80 8C. In situ D–E loop measurements from �80 to þ110 8C showed that the remanent polarization of the TrFE copolymer was more stable than that of the PVDF homopolymer. D–E hysteresis loop and d33 results were also compared with the deflection of the PVDF homopolymer and TrFE copolymer bimorphs tested over a wide temperature range.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Various piezoelectric polymers based on polyvinylidene fluoride (PVDF) are of interest for large aperture space-based telescopes. Dimensional adjustments of adaptive polymer films depend on charge deposition and require a detailed understanding of the piezoelectric material responses which are expected to deteriorate owing to strong vacuum UV, � -, X-ray, energetic particles and atomic oxygen exposure. We have investigated the degradation of PVDF and its copolymers under various stress environments detrimental to reliable operation in space. Initial radiation aging studies have shown complex material changes with lowered Curie temperatures, complex material changes with lowered melting points, morphological transformations and significant crosslinking, but little influence on piezoelectric d33 constants. Complex aging processes have also been observed in accelerated temperature environments inducing annealing phenomena and cyclic stresses. The results suggest that poling and chain orientation are negatively affected by radiation and temperature exposure. A framework for dealing with these complex material qualification issues and overall system survivability predictions in low earth orbit conditions has been established. It allows for improved material selection, feedback for manufacturing and processing, material optimization/stabilization strategies and provides guidance on any alternative materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Piezoelectric polymers based on polyvinylidene flouride (PVDF) are of interest as adaptive materials for large aperture space-based telescopes. In this study, two piezoelectric polymers, PVDF and P(VDF-TrFE), were exposed to conditions simulating the thermal, radiative and atomic oxygen conditions of low Earth orbit. The degradation pathways were governed by a combination of chemical and physical degradation processes with the molecular changes primarily induced via radiative damage, and physical damage from temperature and atomic oxygen exposure, as evident from depoling, loss of orientation and surface erosion. The piezoelectric responsiveness of each polymer was strongly dependent on exposure temperature. Radiation and atomic oxygen exposure caused physical and chemical degradation, which would ultimately cause terminal damage of thin films, but did not adversely affect the piezoelectric properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance criteria of piezoelectric polymers based on polyvinylidene flouride (PVDF) in complex space environments have been evaluated. Thin films of these materials are being explored as in-situ responsive materials for large aperture space-based telescopes with the shape deformation and optical features dependent on long-term deformation and optical features dependent on long-term degradation effects, mainly due to thermal cycling, vacuum UV exposure and atomic oxygen. A summary of previous studies related to materials testing and performance prediction based on a laboratory environment is presented. The degradation pathways are a combination of molecular chemical changes primarily induced via radiative damage and physical degradation processes due to temperature and atomic oxygen exposure resulting in depoling, loss of orientation and surface erosing. Experimental validation for these materials to be used in space is being conducted as part of MISSE-6 (Materials International Space Station Experiment) with an overview of the experimental strategies discussed here.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of simulated low earth orbit conditions on vinylidene-fluoride based thin-film piezoelectrics for use in lightweight, large surface area spacecraft such as telescope mirrors and antennae is presented. The environmental factors considered as having the greatest potential to cause damage are temperature, atomic oxygen and vacuum UV radiation. Using the piezoelectric strain coefficients and bimorph deflection measurements the piezoelectric performance over the temperature range -100 to +150°C was studied. The effects of simultaneous AO/VUV exposure were also examined and films characterized by their piezoelectric, surface, and thermal properties. Two fluorinated piezoelectric polymers, poly(vinylidene fluoride) and poly(vinylidene fluoride-co-trifluoroethylene), were adversely affected at elevated temperatures due to depoling caused by randomization of the dipole orientation, while AO/VUV contributed little to depoling but did cause significant surface erosion and, in the case of P(VDF-TrFE), bulk crosslinking. These results highlight the importance of materials selection for use in space environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Piezoelectric polymers based on polyvinylidene fluoride (PVDF) are of interest for large aperture space-based telescopes. Dimensional adjustments of adaptive polymer films are achieved via charge deposition and require a detailed understanding of the piezoelectric material responses which are expected to suffer due to strong vacuum UV, gamma, X-ray, energetic particles and atomic oxygen under low earth orbit exposure conditions. The degradation of PVDF and its copolymers under various stress environments has been investigated. Initial radiation aging studies using gamma- and e-beam irradiation have shown complex material changes with significant crosslinking, lowered melting and Curie points (where observable), effects on crystallinity, but little influence on overall piezoelectric properties. Surprisingly, complex aging processes have also been observed in elevated temperature environments with annealing phenomena and cyclic stresses resulting in thermal depoling of domains. Overall materials performance appears to be governed by a combination of chemical and physical degradation processes. Molecular changes are primarily induced via radiative damage, and physical damage from temperature and AO exposure is evident as depoling and surface erosion. Major differences between individual copolymers have been observed providing feedback on material selection strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multipotent mesenchymal stem cells (MSCs), first identified in the bone marrow, have subsequently been found in many other tissues, including fat, cartilage, muscle, and bone. Adipose tissue has been identified as an alternative to bone marrow as a source for the isolation of MSCs, as it is neither limited in volume nor as invasive in the harvesting. This study compares the multipotentiality of bone marrow-derived mesenchymal stem cells (BMSCs) with that of adipose-derived mesenchymal stem cells (AMSCs) from 12 age- and sex-matched donors. Phenotypically, the cells are very similar, with only three surface markers, CD106, CD146, and HLA-ABC, differentially expressed in the BMSCs. Although colony-forming units-fibroblastic numbers in BMSCs were higher than in AMSCs, the expression of multiple stem cell-related genes, like that of fibroblast growth factor 2 (FGF2), the Wnt pathway effectors FRAT1 and frizzled 1, and other self-renewal markers, was greater in AMSCs. Furthermore, AMSCs displayed enhanced osteogenic and adipogenic potential, whereas BMSCs formed chondrocytes more readily than AMSCs. However, by removing the effects of proliferation from the experiment, AMSCs no longer out-performed BMSCs in their ability to undergo osteogenic and adipogenic differentiation. Inhibition of the FGF2/fibroblast growth factor receptor 1 signaling pathway demonstrated that FGF2 is required for the proliferation of both AMSCs and BMSCs, yet blocking FGF2 signaling had no direct effect on osteogenic differentiation. Disclosure of potential conflicts of interest is found at the end of this article.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High renewal and maintenance of multipotency of human adult stem cells (hSCs), are a prerequisite for experimental analysis as well as for potential clinical usages. The most widely used strategy for hSC culture and proliferation is using serum. However, serum is poorly defined and has a considerable degree of inter-batch variation, which makes it difficult for large-scale mesenchymal stem cells (MSCs) expansion in homogeneous culture conditions. Moreover, it is often observed that cells grown in serum-containing media spontaneously differentiate into unknown and/or undesired phenotypes. Another way of maintaining hSC development is using cytokines and/or tissue-specific growth factors; this is a very expensive approach and can lead to early unwanted differentiation. In order to circumvent these issues, we investigated the role of sphingosine-1-phosphate (S1P), in the growth and multipotency maintenance of human bone marrow and adipose tissue-derived MSCs. We show that S1P induces growth, and in combination with reduced serum, or with the growth factors FGF and platelet-derived growth factor-AB, S1P has an enhancing effect on growth. We also show that the MSCs cultured in S1P-supplemented media are able to maintain their differentiation potential for at least as long as that for cells grown in the usual serum-containing media. This is shown by the ability of cells grown in S1P-containing media to be able to undergo osteogenic as well as adipogenic differentiation. This is of interest, since S1P is a relatively inexpensive natural product, which can be obtained in homogeneous high-purity batches: this will minimize costs and potentially reduce the unwanted side effects observed with serum. Taken together, S1P is able to induce proliferation while maintaining the multipotency of different human stem cells, suggesting a potential for S1P in developing serum-free or serum-reduced defined medium for adult stem cell cultures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an automated system for 3D assembly of tissue engineering (TE) scaffolds made from biocompatible microscopic building blocks with relatively large fabrication error. It focuses on the pin-into-hole force control developed for this demanding microassembly task. A beam-like gripper with integrated force sensing at a 3 mN resolution with a 500 mN measuring range is designed, and is used to implement an admittance force-controlled insertion using commercial precision stages. Visual-based alignment followed by an insertion is complemented by a haptic exploration strategy using force and position information. The system demonstrates fully automated construction of TE scaffolds with 50 microparts whose dimension error is larger than 5%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective. Previous studies have shown the influence of subchondral bone osteoblasts (SBOs) on phenotypical changes of articular cartilage chondrocytes (ACCs) during the development of osteoarthritis (OA). The molecular mechanisms involved during this process remain elusive, in particular, the signal transduction pathways. The aim of this study was to investigate the in vitro effects of OA SBOs on the phenotypical changes in normal ACCs and to unveil the potential involvement of MAPK signaling pathways during this process. Methods. Normal and arthritic cartilage and bone samples were collected for isolation of ACCs and SBOs. Direct and indirect coculture models were applied to study chondrocyte hypertrophy under the influence of OA SBOs. MAPKs in the regulation of the cell–cell interactions were monitored by phosphorylated antibodies and relevant inhibitors. Results. OA SBOs led to increased hypertrophic gene expression and matrix calcification in ACCs by means of both direct and indirect cell–cell interactions. In this study, we demonstrated for the first time that OA SBOs suppressed p38 phosphorylation and induced ERK-1/2 signal phosphorylation in cocultured ACCs. The ERK-1/2 pathway inhibitor PD98059 significantly attenuated the hypertrophic changes induced by conditioned medium from OA SBOs, and the p38 inhibitor SB203580 resulted in the up-regulation of hypertrophic genes in ACCs. Conclusion. The findings of this study suggest that the pathologic interaction of OA SBOs and ACCs is mediated via the activation of ERK-1/2 phosphorylation and deactivation of p38 phosphorylation, resulting in hypertrophic differentiation of ACCs.