905 resultados para Enterprise Systems, Curricula, Packaged Software
Resumo:
As the backbone of e-business, Enterprise Resource Planning (ERP)system plays an important role in today's competitive business environment. Few publications discuss the application of ERP systems in a virtual enterprise (VE). A VE is defined as a dynamic partnership among enterprises that can bring together complementary core competencies needed to achieve a business task. Since VE strongly emphasises partner cooperation, specific issues exist relative to the implementation of ERP systems in a VE. This paper discusses the use of VE Performance Measurement System(VEPMS) to coordinate ERP systems of VE partners. It also defines the framework of a `Virtual Enterprise Resource Planning (VERP) system', and identifies research avenues in this field.
Resumo:
This paper investigates how existing software engineering techniques can be employed, adapted and integrated for the development of systems of systems. Starting from existing system-of-systems (SoS) studies, we identify computing paradigms and techniques that have the potential to help address the challenges associated with SoS development, and propose an SoS development framework that combines these techniques in a novel way. This framework addresses the development of a class of IT systems of systems characterised by high variability in the types of interactions between their component systems, and by relatively small numbers of such interactions. We describe how the framework supports the dynamic, automated generation of the system interfaces required to achieve these interactions, and present a case study illustrating the development of a data-centre SoS using the new framework.
Resumo:
Requirements for systems to continue to operate satisfactorily in the presence of faults has led to the development of techniques for the construction of fault tolerant software. This thesis addresses the problem of error detection and recovery in distributed systems which consist of a set of communicating sequential processes. A method is presented for the `a priori' design of conversations for this class of distributed system. Petri nets are used to represent the state and to solve state reachability problems for concurrent systems. The dynamic behaviour of the system can be characterised by a state-change table derived from the state reachability tree. Systematic conversation generation is possible by defining a closed boundary on any branch of the state-change table. By relating the state-change table to process attributes it ensures all necessary processes are included in the conversation. The method also ensures properly nested conversations. An implementation of the conversation scheme using the concurrent language occam is proposed. The structure of the conversation is defined using the special features of occam. The proposed implementation gives a structure which is independent of the application and is independent of the number of processes involved. Finally, the integrity of inter-process communications is investigated. The basic communication primitives used in message passing systems are seen to have deficiencies when applied to systems with safety implications. Using a Petri net model a boundary for a time-out mechanism is proposed which will increase the integrity of a system which involves inter-process communications.
Resumo:
Most parametric software cost estimation models used today evolved in the late 70's and early 80's. At that time, the dominant software development techniques being used were the early 'structured methods'. Since then, several new systems development paradigms and methods have emerged, one being Jackson Systems Development (JSD). As current cost estimating methods do not take account of these developments, their non-universality means they cannot provide adequate estimates of effort and hence cost. In order to address these shortcomings two new estimation methods have been developed for JSD projects. One of these methods JSD-FPA, is a top-down estimating method, based on the existing MKII function point method. The other method, JSD-COCOMO, is a sizing technique which sizes a project, in terms of lines of code, from the process structure diagrams and thus provides an input to the traditional COCOMO method.The JSD-FPA method allows JSD projects in both the real-time and scientific application areas to be costed, as well as the commercial information systems applications to which FPA is usually applied. The method is based upon a three-dimensional view of a system specification as opposed to the largely data-oriented view traditionally used by FPA. The method uses counts of various attributes of a JSD specification to develop a metric which provides an indication of the size of the system to be developed. This size metric is then transformed into an estimate of effort by calculating past project productivity and utilising this figure to predict the effort and hence cost of a future project. The effort estimates produced were validated by comparing them against the effort figures for six actual projects.The JSD-COCOMO method uses counts of the levels in a process structure chart as the input to an empirically derived model which transforms them into an estimate of delivered source code instructions.
Resumo:
Software development methodologies are becoming increasingly abstract, progressing from low level assembly and implementation languages such as C and Ada, to component based approaches that can be used to assemble applications using technologies such as JavaBeans and the .NET framework. Meanwhile, model driven approaches emphasise the role of higher level models and notations, and embody a process of automatically deriving lower level representations and concrete software implementations. The relationship between data and software is also evolving. Modern data formats are becoming increasingly standardised, open and empowered in order to support a growing need to share data in both academia and industry. Many contemporary data formats, most notably those based on XML, are self-describing, able to specify valid data structure and content, and can also describe data manipulations and transformations. Furthermore, while applications of the past have made extensive use of data, the runtime behaviour of future applications may be driven by data, as demonstrated by the field of dynamic data driven application systems. The combination of empowered data formats and high level software development methodologies forms the basis of modern game development technologies, which drive software capabilities and runtime behaviour using empowered data formats describing game content. While low level libraries provide optimised runtime execution, content data is used to drive a wide variety of interactive and immersive experiences. This thesis describes the Fluid project, which combines component based software development and game development technologies in order to define novel component technologies for the description of data driven component based applications. The thesis makes explicit contributions to the fields of component based software development and visualisation of spatiotemporal scenes, and also describes potential implications for game development technologies. The thesis also proposes a number of developments in dynamic data driven application systems in order to further empower the role of data in this field.
Resumo:
The goal of this roadmap paper is to summarize the state-of-the-art and to identify critical challenges for the systematic software engineering of self-adaptive systems. The paper is partitioned into four parts, one for each of the identified essential views of self-adaptation: modelling dimensions, requirements, engineering, and assurances. For each view, we present the state-of-the-art and the challenges that our community must address. This roadmap paper is a result of the Dagstuhl Seminar 08031 on "Software Engineering for Self-Adaptive Systems," which took place in January 2008. © 2009 Springer Berlin Heidelberg.
Resumo:
The paper discusses both the complementary factors and contradictions of adoption ERP based systems with enterprise 2.0. ERP is well known as its' efficient business process management. Also the high failure rate the system implementation is famous as well. According to [1], ERP systems could achieve efficient business performance by enabling a standardized business process design, but at a cost of flexibility in operations. However, enterprise 2.0 supports flexible business process management, informal and less structured interactions [3],[4],[21]. Traditional researcher claimed efficiency and flexibility may seem incompatible in that they are different business objectives and may exist in different organizational environments. However, the paper will break traditional norms that combine ERP and enterprise 2.0 in a single enterprise to improve both efficient and flexible operations simultaneously. Based on the multiple cases studies, four cases presented different attitudes on usage ERP systems and enterprise social systems. Based on socio-technical theory, the paper presents in-depth analysis benefits of combination ERP with enterprise 2.0 for these firms.
Resumo:
This paper describes work conducted as a joint collaboration between the Virtual Design Team (VDT) research group at Stanford University (USA) , the Systems Engineering Group (SEG) at De Montfort University (UK) and Elipsis Ltd . We describe a new docking methodology in which we combine the use of two radically different types of organizational simulation tool. The VDT simulation tool operates on a standalone computer, and employs computational agents during simulated execution of a pre-defined process model (Kunz, 1998). The other software tool, DREAMS , operates over a standard TCP/IP network, and employs human agents (real people) during a simulated execution of a pre-defined process model (Clegg, 2000).
Resumo:
The Implementation of Enterprise Resource Planning (ERP) systems require huge investments while ineffective implementations of such projects are commonly observed. A considerable number of these projects have been reported to fail or take longer than it was initially planned, while previous studies show that the aim of rapid implementation of such projects has not been successful and the failure of the fundamental goals in these projects have imposed huge amounts of costs on investors. Some of the major consequences are the reduction in demand for such products and the introduction of further skepticism to the managers and investors of ERP systems. In this regard, it is important to understand the factors determining success or failure of ERP implementation. The aim of this paper is to study the critical success factors (CSFs) in implementing ERP systems and to develop a conceptual model which can serve as a basis for ERP project managers. These critical success factors that are called “core critical success factors” are extracted from 62 published papers using the content analysis and the entropy method. The proposed conceptual model has been verified in the context of five multinational companies.
Resumo:
Contemporary software systems are becoming increasingly large, heterogeneous, and decentralised. They operate in dynamic environments and their architectures exhibit complex trade-offs across dimensions of goals, time, and interaction, which emerges internally from the systems and externally from their environment. This gives rise to the vision of self-aware architecture, where design decisions and execution strategies for these concerns are dynamically analysed and seamlessly managed at run-time. Drawing on the concept of self-awareness from psychology, this paper extends the foundation of software architecture styles for self-adaptive systems to arrive at a new principled approach for architecting self-aware systems. We demonstrate the added value and applicability of the approach in the context of service provisioning to cloud-reliant service-based applications.