892 resultados para Energy consumption -- Computer simulation
Resumo:
In dieser Arbeit wurden Simulation von Flüssigkeiten auf molekularer Ebene durchgeführt, wobei unterschiedliche Multi-Skalen Techniken verwendet wurden. Diese erlauben eine effektive Beschreibung der Flüssigkeit, die weniger Rechenzeit im Computer benötigt und somit Phänomene auf längeren Zeit- und Längenskalen beschreiben kann.rnrnEin wesentlicher Aspekt ist dabei ein vereinfachtes (“coarse-grained”) Modell, welches in einem systematischen Verfahren aus Simulationen des detaillierten Modells gewonnen wird. Dabei werden ausgewählte Eigenschaften des detaillierten Modells (z.B. Paar-Korrelationsfunktion, Druck, etc) reproduziert.rnrnEs wurden Algorithmen untersucht, die eine gleichzeitige Kopplung von detaillierten und vereinfachten Modell erlauben (“Adaptive Resolution Scheme”, AdResS). Dabei wird das detaillierte Modell in einem vordefinierten Teilvolumen der Flüssigkeit (z.B. nahe einer Oberfläche) verwendet, während der Rest mithilfe des vereinfachten Modells beschrieben wird.rnrnHierzu wurde eine Methode (“Thermodynamische Kraft”) entwickelt um die Kopplung auch dann zu ermöglichen, wenn die Modelle in verschiedenen thermodynamischen Zuständen befinden. Zudem wurde ein neuartiger Algorithmus der Kopplung beschrieben (H-AdResS) der die Kopplung mittels einer Hamilton-Funktion beschreibt. In diesem Algorithmus ist eine zur Thermodynamischen Kraft analoge Korrektur mit weniger Rechenaufwand möglich.rnrnAls Anwendung dieser grundlegenden Techniken wurden Pfadintegral Molekulardynamik (MD) Simulationen von Wasser untersucht. Mithilfe dieser Methode ist es möglich, quantenmechanische Effekte der Kerne (Delokalisation, Nullpunktsenergie) in die Simulation einzubeziehen. Hierbei wurde zuerst eine Multi-Skalen Technik (“Force-matching”) verwendet um eine effektive Wechselwirkung aus einer detaillierten Simulation auf Basis der Dichtefunktionaltheorie zu extrahieren. Die Pfadintegral MD Simulation verbessert die Beschreibung der intra-molekularen Struktur im Vergleich mit experimentellen Daten. Das Modell eignet sich auch zur gleichzeitigen Kopplung in einer Simulation, wobei ein Wassermolekül (beschrieben durch 48 Punktteilchen im Pfadintegral-MD Modell) mit einem vereinfachten Modell (ein Punktteilchen) gekoppelt wird. Auf diese Weise konnte eine Wasser-Vakuum Grenzfläche simuliert werden, wobei nur die Oberfläche im Pfadintegral Modell und der Rest im vereinfachten Modell beschrieben wird.
Resumo:
The rapid development in the field of lighting and illumination allows low energy consumption and a rapid growth in the use, and development of solid-state sources. As the efficiency of these devices increases and their cost decreases there are predictions that they will become the dominant source for general illumination in the short term. The objective of this thesis is to study, through extensive simulations in realistic scenarios, the feasibility and exploitation of visible light communication (VLC) for vehicular ad hoc networks (VANETs) applications. A brief introduction will introduce the new scenario of smart cities in which visible light communication will become a fundamental enabling technology for the future communication systems. Specifically, this thesis focus on the acquisition of several, frequent, and small data packets from vehicles, exploited as sensors of the environment. The use of vehicles as sensors is a new paradigm to enable an efficient environment monitoring and an improved traffic management. In most cases, the sensed information must be collected at a remote control centre and one of the most challenging aspects is the uplink acquisition of data from vehicles. My thesis discusses the opportunity to take advantage of short range vehicle-to-vehicle (V2V) and vehicle-to-roadside (V2R) communications to offload the cellular networks. More specifically, it discusses the system design and assesses the obtainable cellular resource saving, by considering the impact of the percentage of vehicles equipped with short range communication devices, of the number of deployed road side units, and of the adopted routing protocol. When short range communications are concerned, WAVE/IEEE 802.11p is considered as standard for VANETs. Its use together with VLC will be considered in urban vehicular scenarios to let vehicles communicate without involving the cellular network. The study is conducted by simulation, considering both a simulation platform (SHINE, simulation platform for heterogeneous interworking networks) developed within the Wireless communication Laboratory (Wilab) of the University of Bologna and CNR, and network simulator (NS3). trying to realistically represent all the wireless network communication aspects. Specifically, simulation of vehicular system was performed and introduced in ns-3, creating a new module for the simulator. This module will help to study VLC applications in VANETs. Final observations would enhance and encourage potential research in the area and optimize performance of VLC systems applications in the future.
Resumo:
This paper examines the accuracy of software-based on-line energy estimation techniques. It evaluates today’s most widespread energy estimation model in order to investigate whether the current methodology of pure software-based energy estimation running on a sensor node itself can indeed reliably and accurately determine its energy consumption - independent of the particular node instance, the traffic load the node is exposed to, or the MAC protocol the node is running. The paper enhances today’s widely used energy estimation model by integrating radio transceiver switches into the model, and proposes a methodology to find the optimal estimation model parameters. It proves by statistical validation with experimental data that the proposed model enhancement and parameter calibration methodology significantly increases the estimation accuracy.
Resumo:
Investigation uses simulation to explore the inherent tradeoffs ofcontrolling high-speed and highly robust walking robots while minimizing energy consumption. Using a novel controller which optimizes robustness, energy economy, and speed of a simulated robot on rough terrain, the user can adjust their priorities between these three outcome measures and systematically generate a performance curveassessing the tradeoffs associated with these metrics.
Resumo:
The past decade has seen the energy consumption in servers and Internet Data Centers (IDCs) skyrocket. A recent survey estimated that the worldwide spending on servers and cooling have risen to above $30 billion and is likely to exceed spending on the new server hardware . The rapid rise in energy consumption has posted a serious threat to both energy resources and the environment, which makes green computing not only worthwhile but also necessary. This dissertation intends to tackle the challenges of both reducing the energy consumption of server systems and by reducing the cost for Online Service Providers (OSPs). Two distinct subsystems account for most of IDC’s power: the server system, which accounts for 56% of the total power consumption of an IDC, and the cooling and humidifcation systems, which accounts for about 30% of the total power consumption. The server system dominates the energy consumption of an IDC, and its power draw can vary drastically with data center utilization. In this dissertation, we propose three models to achieve energy effciency in web server clusters: an energy proportional model, an optimal server allocation and frequency adjustment strategy, and a constrained Markov model. The proposed models have combined Dynamic Voltage/Frequency Scaling (DV/FS) and Vary-On, Vary-off (VOVF) mechanisms that work together for more energy savings. Meanwhile, corresponding strategies are proposed to deal with the transition overheads. We further extend server energy management to the IDC’s costs management, helping the OSPs to conserve, manage their own electricity cost, and lower the carbon emissions. We have developed an optimal energy-aware load dispatching strategy that periodically maps more requests to the locations with lower electricity prices. A carbon emission limit is placed, and the volatility of the carbon offset market is also considered. Two energy effcient strategies are applied to the server system and the cooling system respectively. With the rapid development of cloud services, we also carry out research to reduce the server energy in cloud computing environments. In this work, we propose a new live virtual machine (VM) placement scheme that can effectively map VMs to Physical Machines (PMs) with substantial energy savings in a heterogeneous server cluster. A VM/PM mapping probability matrix is constructed, in which each VM request is assigned with a probability running on PMs. The VM/PM mapping probability matrix takes into account resource limitations, VM operation overheads, server reliability as well as energy effciency. The evolution of Internet Data Centers and the increasing demands of web services raise great challenges to improve the energy effciency of IDCs. We also express several potential areas for future research in each chapter.
Resumo:
To mitigate greenhouse gas (GHG) emissions and reduce U.S. dependence on imported oil, the United States (U.S.) is pursuing several options to create biofuels from renewable woody biomass (hereafter referred to as “biomass”). Because of the distributed nature of biomass feedstock, the cost and complexity of biomass recovery operations has significant challenges that hinder increased biomass utilization for energy production. To facilitate the exploration of a wide variety of conditions that promise profitable biomass utilization and tapping unused forest residues, it is proposed to develop biofuel supply chain models based on optimization and simulation approaches. The biofuel supply chain is structured around four components: biofuel facility locations and sizes, biomass harvesting/forwarding, transportation, and storage. A Geographic Information System (GIS) based approach is proposed as a first step for selecting potential facility locations for biofuel production from forest biomass based on a set of evaluation criteria, such as accessibility to biomass, railway/road transportation network, water body and workforce. The development of optimization and simulation models is also proposed. The results of the models will be used to determine (1) the number, location, and size of the biofuel facilities, and (2) the amounts of biomass to be transported between the harvesting areas and the biofuel facilities over a 20-year timeframe. The multi-criteria objective is to minimize the weighted sum of the delivered feedstock cost, energy consumption, and GHG emissions simultaneously. Finally, a series of sensitivity analyses will be conducted to identify the sensitivity of the decisions, such as the optimal site selected for the biofuel facility, to changes in influential parameters, such as biomass availability and transportation fuel price. Intellectual Merit The proposed research will facilitate the exploration of a wide variety of conditions that promise profitable biomass utilization in the renewable biofuel industry. The GIS-based facility location analysis considers a series of factors which have not been considered simultaneously in previous research. Location analysis is critical to the financial success of producing biofuel. The modeling of woody biomass supply chains using both optimization and simulation, combing with the GIS-based approach as a precursor, have not been done to date. The optimization and simulation models can help to ensure the economic and environmental viability and sustainability of the entire biofuel supply chain at both the strategic design level and the operational planning level. Broader Impacts The proposed models for biorefineries can be applied to other types of manufacturing or processing operations using biomass. This is because the biomass feedstock supply chain is similar, if not the same, for biorefineries, biomass fired or co-fired power plants, or torrefaction/pelletization operations. Additionally, the research results of this research will continue to be disseminated internationally through publications in journals, such as Biomass and Bioenergy, and Renewable Energy, and presentations at conferences, such as the 2011 Industrial Engineering Research Conference. For example, part of the research work related to biofuel facility identification has been published: Zhang, Johnson and Sutherland [2011] (see Appendix A). There will also be opportunities for the Michigan Tech campus community to learn about the research through the Sustainable Future Institute.
Resumo:
A range of societal issues have been caused by fossil fuel consumption in the transportation sector in the United States (U.S.), including health related air pollution, climate change, the dependence on imported oil, and other oil related national security concerns. Biofuels production from various lignocellulosic biomass types such as wood, forest residues, and agriculture residues have the potential to replace a substantial portion of the total fossil fuel consumption. This research focuses on locating biofuel facilities and designing the biofuel supply chain to minimize the overall cost. For this purpose an integrated methodology was proposed by combining the GIS technology with simulation and optimization modeling methods. The GIS based methodology was used as a precursor for selecting biofuel facility locations by employing a series of decision factors. The resulted candidate sites for biofuel production served as inputs for simulation and optimization modeling. As a precursor to simulation or optimization modeling, the GIS-based methodology was used to preselect potential biofuel facility locations for biofuel production from forest biomass. Candidate locations were selected based on a set of evaluation criteria, including: county boundaries, a railroad transportation network, a state/federal road transportation network, water body (rivers, lakes, etc.) dispersion, city and village dispersion, a population census, biomass production, and no co-location with co-fired power plants. The simulation and optimization models were built around key supply activities including biomass harvesting/forwarding, transportation and storage. The built onsite storage served for spring breakup period where road restrictions were in place and truck transportation on certain roads was limited. Both models were evaluated using multiple performance indicators, including cost (consisting of the delivered feedstock cost, and inventory holding cost), energy consumption, and GHG emissions. The impact of energy consumption and GHG emissions were expressed in monetary terms to keep consistent with cost. Compared with the optimization model, the simulation model represents a more dynamic look at a 20-year operation by considering the impacts associated with building inventory at the biorefinery to address the limited availability of biomass feedstock during the spring breakup period. The number of trucks required per day was estimated and the inventory level all year around was tracked. Through the exchange of information across different procedures (harvesting, transportation, and biomass feedstock processing procedures), a smooth flow of biomass from harvesting areas to a biofuel facility was implemented. The optimization model was developed to address issues related to locating multiple biofuel facilities simultaneously. The size of the potential biofuel facility is set up with an upper bound of 50 MGY and a lower bound of 30 MGY. The optimization model is a static, Mathematical Programming Language (MPL)-based application which allows for sensitivity analysis by changing inputs to evaluate different scenarios. It was found that annual biofuel demand and biomass availability impacts the optimal results of biofuel facility locations and sizes.
Resumo:
In recent years, advanced metering infrastructure (AMI) has been the main research focus due to the traditional power grid has been restricted to meet development requirements. There has been an ongoing effort to increase the number of AMI devices that provide real-time data readings to improve system observability. Deployed AMI across distribution secondary networks provides load and consumption information for individual households which can improve grid management. Significant upgrade costs associated with retrofitting existing meters with network-capable sensing can be made more economical by using image processing methods to extract usage information from images of the existing meters. This thesis presents a new solution that uses online data exchange of power consumption information to a cloud server without modifying the existing electromechanical analog meters. In this framework, application of a systematic approach to extract energy data from images replaces the manual reading process. One case study illustrates the digital imaging approach is compared to the averages determined by visual readings over a one-month period.
Resumo:
Over the past several years the topics of energy consumption and energy harvesting have gained significant importance as a means for improved operation of wireless sensor and mesh networks. Energy-awareness of operation is especially relevant for application scenarios from the domain of environmental monitoring in hard to access areas. In this work we reflect upon our experiences with a real-world deployment of a wireless mesh network. In particular, a comprehensive study on energy measurements collected over several weeks during the summer and the winter period in a network deployment in the Swiss Alps is presented. Energy performance is monitored and analysed for three system components, namely, mesh node, battery and solar panel module. Our findings cover a number of aspects of energy consumption, including the amount of load consumed by a mesh node, the amount of load harvested by a solar panel module, and the dependencies between these two. With our work we aim to shed some light on energy-aware network operation and to help both users and developers in the planning and deployment of a new wireless (mesh) network for environmental research.
Resumo:
In this paper we address energy efficiency issues of Information Centric Networking (ICN) architectures. In the proposed framework, we investigate the impact of ICN architectures on energy consumption of networking hardware devices and compare them with the energy consumption of other content dissemination methods. In particular, we investigate the consequences of caching in ICN from the energy efficiency perspective, taking into account the energy consumption of different hardware components in the ICN architectures. Based on the results of the analysis, we address the practical issues regarding the possible deployment and evolution of ICN from an energy-efficiency perspective. Finally, we summarize our findings and discuss the outlook/future perspectives on the energy efficiency of Information-Centric Networks.
Resumo:
This paper proposes the Optimized Power save Algorithm for continuous Media Applications (OPAMA) to improve end-user device energy efficiency. OPAMA enhances the standard legacy Power Save Mode (PSM) of IEEE 802.11 by taking into consideration application specific requirements combined with data aggregation techniques. By establishing a balanced cost/benefit tradeoff between performance and energy consumption, OPAMA is able to improve energy efficiency, while keeping the end-user experience at a desired level. OPAMA was assessed in the OMNeT++ simulator using real traces of variable bitrate video streaming applications. The results showed the capability to enhance energy efficiency, achieving savings up to 44% when compared with the IEEE 802.11 legacy PSM.
Resumo:
Various applications for the purposes of event detection, localization, and monitoring can benefit from the use of wireless sensor networks (WSNs). Wireless sensor networks are generally easy to deploy, with flexible topology and can support diversity of tasks thanks to the large variety of sensors that can be attached to the wireless sensor nodes. To guarantee the efficient operation of such a heterogeneous wireless sensor networks during its lifetime an appropriate management is necessary. Typically, there are three management tasks, namely monitoring, (re) configuration, and code updating. On the one hand, status information, such as battery state and node connectivity, of both the wireless sensor network and the sensor nodes has to be monitored. And on the other hand, sensor nodes have to be (re)configured, e.g., setting the sensing interval. Most importantly, new applications have to be deployed as well as bug fixes have to be applied during the network lifetime. All management tasks have to be performed in a reliable, time- and energy-efficient manner. The ability to disseminate data from one sender to multiple receivers in a reliable, time- and energy-efficient manner is critical for the execution of the management tasks, especially for code updating. Using multicast communication in wireless sensor networks is an efficient way to handle such traffic pattern. Due to the nature of code updates a multicast protocol has to support bulky traffic and endto-end reliability. Further, the limited resources of wireless sensor nodes demand an energy-efficient operation of the multicast protocol. Current data dissemination schemes do not fulfil all of the above requirements. In order to close the gap, we designed the Sensor Node Overlay Multicast (SNOMC) protocol such that to support a reliable, time-efficient and energy-efficient dissemination of data from one sender node to multiple receivers. In contrast to other multicast transport protocols, which do not support reliability mechanisms, SNOMC supports end-to-end reliability using a NACK-based reliability mechanism. The mechanism is simple and easy to implement and can significantly reduce the number of transmissions. It is complemented by a data acknowledgement after successful reception of all data fragments by the receiver nodes. In SNOMC three different caching strategies are integrated for an efficient handling of necessary retransmissions, namely, caching on each intermediate node, caching on branching nodes, or caching only on the sender node. Moreover, an option was included to pro-actively request missing fragments. SNOMC was evaluated both in the OMNeT++ simulator and in our in-house real-world testbed and compared to a number of common data dissemination protocols, such as Flooding, MPR, TinyCubus, PSFQ, and both UDP and TCP. The results showed that SNOMC outperforms the selected protocols in terms of transmission time, number of transmitted packets, and energy-consumption. Moreover, we showed that SNOMC performs well with different underlying MAC protocols, which support different levels of reliability and energy-efficiency. Thus, SNOMC can offer a robust, high-performing solution for the efficient distribution of code updates and management information in a wireless sensor network. To address the three management tasks, in this thesis we developed the Management Architecture for Wireless Sensor Networks (MARWIS). MARWIS is specifically designed for the management of heterogeneous wireless sensor networks. A distinguished feature of its design is the use of wireless mesh nodes as backbone, which enables diverse communication platforms and offloading functionality from the sensor nodes to the mesh nodes. This hierarchical architecture allows for efficient operation of the management tasks, due to the organisation of the sensor nodes into small sub-networks each managed by a mesh node. Furthermore, we developed a intuitive -based graphical user interface, which allows non-expert users to easily perform management tasks in the network. In contrast to other management frameworks, such as Mate, MANNA, TinyCubus, or code dissemination protocols, such as Impala, Trickle, and Deluge, MARWIS offers an integrated solution monitoring, configuration and code updating of sensor nodes. Integration of SNOMC into MARWIS further increases performance efficiency of the management tasks. To our knowledge, our approach is the first one, which offers a combination of a management architecture with an efficient overlay multicast transport protocol. This combination of SNOMC and MARWIS supports reliably, time- and energy-efficient operation of a heterogeneous wireless sensor network.
Resumo:
The widespread deployment of wireless mobile communications enables an almost permanent usage of portable devices, which imposes high demands on the battery of these devices. Indeed, battery lifetime is becoming one the most critical factors on the end-users satisfaction when using wireless communications. In this work, the optimized power save algorithm for continuous media applications (OPAMA) is proposed, aiming at enhancing the energy efficiency on end-users devices. By combining the application specific requirements with data aggregation techniques, {OPAMA} improves the standard {IEEE} 802.11 legacy Power Save Mode (PSM) performance. The algorithm uses the feedback on the end-user expected quality to establish a proper tradeoff between energy consumption and application performance. {OPAMA} was assessed in the OMNeT++ simulator, using real traces of variable bitrate video streaming applications, and in a real testbed employing a novel methodology intended to perform an accurate evaluation concerning video Quality of Experience (QoE) perceived by the end-users. The results revealed the {OPAMA} capability to enhance energy efficiency without degrading the end-user observed QoE, achieving savings up to 44 when compared with the {IEEE} 802.11 legacy PSM.
Resumo:
N. Bostrom’s simulation argument and two additional assumptions imply that we are likely to live in a computer simulation. The argument is based upon the following assumption about the workings of realistic brain simulations: The hardware of a computer on which a brain simulation is run bears a close analogy to the brain itself. To inquire whether this is so, I analyze how computer simulations trace processes in their targets. I describe simulations as fictional, mathematical, pictorial, and material models. Even though the computer hardware does provide a material model of the target, this does not suffice to underwrite the simulation argument because the ways in which parts of the computer hardware interact during simulations do not resemble the ways in which neurons interact in the brain. Further, there are computer simulations of all kinds of systems, and it would be unreasonable to infer that some computers display consciousness just because they simulate brains rather than, say, galaxies.
Resumo:
Wireless networks have become more and more popular because of ease of installation, ease of access, and support of smart terminals and gadgets on the move. In the overall life cycle of providing green wireless technology, from production to operation and, finally, removal, this chapter focuses on the operation phase and summarizes insights in energy consumption of major technologies. The chapter also focuses on the edge of the network, comprising network access points (APs) and mobile user devices. It discusses particularities of most important wireless networking technologies: wireless access networks including 3G/LTE and wireless mesh networks (WMNs); wireless sensor networks (WSNs); and ad-hoc and opportunistic networks. Concerning energy efficiency, the chapter discusses challenges in access, wireless sensor, and ad-hoc and opportunistic networks.