993 resultados para Electro-magnetic showers
Resumo:
On 22nd February '96, the space mission STS 75 started ,from the NASA facilities at Cape Canaveral. Such a mission consists in the launch of the shuttle Columbia in order to carry out two experiments in the space: the TSS 1R (Tethered Satellite Sistem 1 Refliight) and the USMP (United States Microgravity Payload). The TSS 1R is a replica of a similar mission TSS 1 '92. The TSS space programme is a bilateral scientific cooperation between the USA space agency NASA (National Aeronautics and Space Agency) and the ASI (Italian Space Agency. The TSS 1R system consists on the shuttle Columbia which deploys, up-ward, by means a conducting tether 20 km long, a spherical satellite (1.5 mt diameter) containing scientific instrumentation. This system, orbiting at about 300 km from the Earth's surface, represents, presently, the largest experimental space structure, Due to its dimensions, flexibility and conducting properties of the tether, the system interacts, in a quite complex manner, wih the earth magnetic field and the ionospheric plasma, in a way that the total system behaves as an electromagnetic radiating antenna as well as an electric power generator. Twelve scientific experiments have been assessed by US and Italian scientists in order to study the electro dynamic behaviour of the structure orbiting in the ionos phere. Two experiments have been prepared in the attempt to receive on the Earth's surface possible electromagnetic events radiated by the TSS 1R. The project EMET (Electro Magnetic Emissions from Tether),USA and the project OESEE (Observations on the Earth Surface of Electromagnetic Emissions) Italy, consist in a coordinated programme of passive detection of such possible EM emissions. This detection will supply the verification of some thoretical hypotheses on the electrodynamic interactions between the orbiting system, the Earth's magnetic field and the ionospheric plasma with two principal aims as the technological assesment of the system concept as well as a deeper knowledge of the ionosphere properties for future space applications. A theoretical model that keeps the peculiarities of tether emissionsis being developed for signal prediction at constant tether current. As a step previous to the calculation of the expected ground signal , the Alfven-wave signature left by the tether far back in the ionosphere has been determined. The scientific expectations from the combined effort to measure the entity of those perturbations will be outlined taking in to account the used ground track sensor systems.
Resumo:
The process of liquid silicon infiltration is investigated for channels with radii from 0.25 to 0.75 [mm] drilled in compact carbon preforms. The advantage of this setup is that the study of the phenomenon results to be simplified. For comparison purposes, attempts are made in order to work out a framework for evaluating the accuracy of simulations. The approach relies on dimensionless numbers involving the properties of the surface reaction. It turns out that complex hydrodynamic behavior derived from second Newton law can be made consistent with Lattice-Boltzmann simulations. The experiments give clear evidence that the growth of silicon carbide proceeds in two different stages and basic mechanisms are highlighted. Lattice-Boltzmann simulations prove to be an effective tool for the description of the growing phase. Namely, essential experimental constraints can be implemented. As a result, the existing models are useful to gain more insight on the process of reactive infiltration into porous media in the first stage of penetration, i.e. up to pore closure because of surface growth. A way allowing to implement the resistance from chemical reaction in Darcy law is also proposed.