929 resultados para Edge Cracks
Resumo:
Abstract Mobile Edge Computing enables the deployment of services, applications, content storage and processing in close proximity to mobile end users. This highly distributed computing environment can be used to provide ultra-low latency, precise positional awareness and agile applications, which could significantly improve user experience. In order to achieve this, it is necessary to consider next-generation paradigms such as Information-Centric Networking and Cloud Computing, integrated with the upcoming 5th Generation networking access. A cohesive end-to-end architecture is proposed, fully exploiting Information-Centric Networking together with the Mobile Follow-Me Cloud approach, for enhancing the migration of content-caches located at the edge of cloudified mobile networks. The chosen content-relocation algorithm attains content-availability improvements of up to 500 when a mobile user performs a request and compared against other existing solutions. The performed evaluation considers a realistic core-network, with functional and non-functional measurements, including the deployment of the entire system, computation and allocation/migration of resources. The achieved results reveal that the proposed architecture is beneficial not only from the users’ perspective but also from the providers point-of-view, which may be able to optimize their resources and reach significant bandwidth savings.
Resumo:
Different parameterizations of subgrid-scale fluxes are utilized in a nonhydrostatic and anelastic mesoscale model to study their influence on simulated Arctic cold air outbreaks. A local closure, a profile closure and two nonlocal closure schemes are applied, including an improved scheme, which is based on other nonlocal closures. It accounts for continuous subgrid-scale fluxes at the top of the surface layer and a continuous Prandtl number with respect to stratification. In the limit of neutral stratification the improved scheme gives eddy diffusivities similar to other parameterizations, whereas for strong unstable stratifications they become much larger and thus turbulent transports are more efficient. It is shown by comparison of model results with observations that the application of simple nonlocal closure schemes results in a more realistic simulation of a convective boundary layer than that of a local or a profile closure scheme. Improvements are due to the nonlocal formulation of the eddy diffusivities and to the inclusion of heat transport, which is independent of local gradients (countergradient transport).
Resumo:
Drill cores are essential for the study of deep-sea sediments and on-land sites because often no suitable outcrop is available or accessible. These cores form the backbone of stratigraphical studies using and combining various dating techniques. Cyclostratigraphy is usually based on fast and inexpensive measurements of physical sediment properties. One indirect but highly valuable proxy for reconstructing the sediment composition and variability is sediment color. However, cracks and other disturbances in sediment cores may dramatically influence the quality of color data retrieved either directly from photospectrometry or derived from core image analysis. Here we present simple but powerful algorithms to extract color data from core images, and focus on routines to exclude cracks from these images. Results are discussed using the example of an ODP core from the Ceara Rise in the Central Atlantic. The crack correction approach presented highly improves the quality of color data and allows the easy incorporation of cracked cores into studies based on core images. This facilitates the quick and inexpensive generation of large color datasets directly from quantified core images, for cyclostratigraphy and other purposes.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Shipping list no.: 89-280-P.
Resumo:
Mode of access: Internet.
Resumo:
Shipping list no.: 86-473-P.
Resumo:
Mode of access: Internet.
Resumo:
"UILU-ENG 78 1740."
Resumo:
Vita.
Resumo:
"This report is based on research sponsored by the U. S. Navy through the Office of Naval Research, Contract Nonr-2653(00)."
Resumo:
"Volumes I through VIII are unclassified while volume IX is classified secret."