1000 resultados para Eastern Basin
Resumo:
The cyclic development of anoxic conditions in the eastern Mediterranean deep sea waters is one of the most fascinating research topics in paleoceanographic studies. In combination with bottom water stagnation, enhanced primary production is a common explanation for the deposition of organic-rich layers (sapropels). This is supported by extensive evidence from both geochemical and micropaleontological studies. The correspondence of recent sapropel layers with peaks of the lower photic zone coccolithophore species Florisphaera profunda has been interpreted as a proxy for the development of a deep chlorophyll maximum (DCM), due to the pycnocline/nutricline shallowing into the lower part of the photic zone. We present millennial-scale data for coccolithophore assemblages from sediments across the most recent sapropel (S1), in the ODP Hole 964B drilled in the Ionian Sea. Relative and absolute abundances of taxa are compared with selected elemental composition of the bulk sediments. The Mn/Al and Ba/Al profiles are used to determine the original thickness of the S1 interval, and show that the upper part of S1 was affected by post-depositional oxidation of organic matter. The Nannofossil Accumulation Rate, defined by the number of coccoliths/cm**2/kyr, suggests that there is no evidence of increased productivity within most of the sapropel layer. In fact, coccolithophore production was at its minimum in the lower part. Minimum coccolith concentrations are reached despite the increase in F. profunda in both relative and absolute abundance. We suggest that the DCM deduced from the increased productivity of this species did not significantly contribute to the putative overall increased primary productivity during the deposition of most of the sapropel layer. Within the upper oxidized part of S1, coccolith accumulation was at least five times higher than in the lower part. This period of high coccolith productivity finds a counterpart in the increase of the Ba/Al ratio. The total concentration of coccoliths is again controlled by the amount of E. huxleyi, but it is also supported by concomitant increases in all the other groups, suggesting that coccolithophore productivity increased throughout the year and through the total vertical extent of the photic zone. At site 964, this is apparently the only moment when coccolithophores contributed substantially to the increased primary productivity generally assumed for the S1 layer.
Resumo:
Twenty percent (19 genera, 95 species) of cosmopolitan, deep-sea (500-4000 m), benthic foraminiferal species became extinct during the late Pliocene-Middle Pleistocene (3-0.12 Ma), with the peak of extinctions (76 species) occurring during the mid-Pleistocene Climate Transition (MPT, 1.2-0.55 Ma). One whole family (Stilostomellidae, 30 species) was wiped out, and a second (Pleurostomellidae, 29 species) was decimated with just one species possibly surviving through to the present. Our studies at 21 deep-sea core sites show widespread pulsed declines in abundance and diversity of the extinction group species during more extreme glacials, with partial interglacial recoveries. These declines started in the late Pliocene in southern sourced deep water masses (Antarctic Bottom Water, Circumpolar Deep Water) and extending into intermediate waters (Antarctic Intermediate Water, North Atlantic Deep Water) in the MPT, with the youngest declines in sites farthest downstream from high-latitude source areas for intermediate waters. We infer that the unusual apertural types that were targeted by this extinction period were adaptations for a specific kind of food source and that it was probably the demise of this microbial food that resulted in the foraminiferal extinctions. We hypothesize that it may have been increased cold and oxygenation of the southern sourced deep water masses that impacted on this deep water microbial food source during major late Pliocene and Early Pleistocene glacials when Antarctic ice was substantially expanded. The food source in intermediate water was not impacted until major glacials in the MPT when there were significant expansion of polar sea ice in both hemispheres and major changes in the source areas, temperature, and oxygenation of global intermediate waters.
Resumo:
This set provides 1779 CTD profiles of temperature and salinity measured with a russian "Zond-Bathometer" by the research vessels Yakov Gakkel and Vladimir Parshin, of the former Soviet Union, during 1987-1990. It is dedicated to the memory of Professor Ivan Ovchinnikov (1931-07-14 to 2000-06-10) who initiated the soviet program of research of the Mediterranean Sea and contributed significantly to the investigation of physical processes in the Mediterranean Sea.