957 resultados para EXTRACELLULAR BIOSYNTHESIS
Resumo:
Bidirectional exchange of information between the cancer cells and their environment is essential for cancer to evolve. Cancer cells lose the ability to regulate their growth, gain the ability to detach from neighboring cells and finally some of the cells disseminate from the primary tumor and invade to the adjacent tissue. During cancer progression, cells acquire features that promote cancer motility and proliferation one of them being increased filopodia number. Filopodia are dynamic actin-rich structures extending from the leading edge of migrating cells and the main function of these structures is to serve as environmental sensors. It is nowadays widely appreciated, that not only the cancer cells, but also the surrounding of the tumor – the tumor microenvironment- contribute to cancer cell dissemination and tumor growth. Activated stromal fibroblasts, also known as cancer-associated fibroblasts (CAFs) actively participate on tumor progression. CAFs are the most abundant cell type surrounding the cancer cells and they are the main cell type producing the extracellular matrix (ECM) within tumor stroma. CAFs secrete growth factors to promote tumor growth, direct cancer cell invasion as well as modify the stromal ECM architecture. The aim of this thesis was to investigate the function of filopodia, particularly the role of filopodia-inducing protein Myosin-X (Myo10), in breast cancer cell invasion and metastasis. We found that Myo10 is an important regulator of basal type breast cancer spreading downstream of mutant p53. In addition, I investigated the role of CAFs and their secreted matrix on tumor growth. According to the results, CAF-derived matrix has altered organization and stiffness which induces the carcinoma cell proliferation via epigenetic mechanisms. I identified histone demethylase enzyme JMJD1a to be regulated by the stiffness and to participate in stiffness induced growth control.
Resumo:
The purpose of the current investigation was to establish an in-l'itro skeletal muscle model to study acute alterations in resting skeletal muscle cell volume. Isolated. whole muscle (SOL and EDL) was dissected from Long Evans rats and incubated for 60 min in Sigma Medium-199 (resting tension (lg). bubbled with 95:5% 02:C02, 30 ± 2°C, and pH 7.4). Media osmolality was altered to simulate hypo-osmotic (190 ± 10 Osm) (HYPO) or hyper-osmotic conditions (400 ± 10 Osm) (HYPER) while an iso-osmotic condition (290± 1 0 Osm) (CON) served as a control (n= 17.19.17). Following incubation, relative muscle water content decreased with HYPER and increased with HYPO in both muscle types (p<0.05). The cross-sectional area of HYPO SOL type I and type II fibres increased (p<0.05) while the EDL type 11 fibre area decreased in HYPER and increascd from HYPO exposure. Furthermore, HYPER exposure in both muscles lead to decreased ATP and phosphocreatine (p<0.05) and increased creatine and lactate (p<0.05) compared to CON. This isolated skeletal muscle model proved viable and demonstrated that altering extracellular osmolality could cause acutc alterations in muscle water content and resting muscle metabolism.
Resumo:
Madagascar periwinkle (Catharanthus roseus) produces the well known and remarkably complex dimeric anticancer alkaloids vinblastine and vincristine that are derived by coupling vindoline and catharanthine monomers. This thesis describes the novel application of carborundum abrasion (CA) technique as a tool for large scale isolation of leaf epidermis enriched proteins. This technique was used to facilitate the purification to apparent homogeneity of 16-hydroxytabersonine-16-0-methyltransferse (l60MT) that catalyses the second step in the 6 step pathway that converts tabersonine into vindoline. This versatile tool was also used to harvest leaf epidermis enriched mRNAs that facilitated the molecular cloning of the 160MT. Functional expression and biochemical characterization of recombinant 160MT enzyme showed that it had a very narrow substrate specificity and high affinity for 16-hydroxytabersonine, since other closely related monoterpene indole alkaloids (MIAs) did not act as substrates. In addition to allowing the cloning of this gene, CA technique clearly showed that 160MT is predominantly expressed in Catharanthus leaf epidermis, in contrast to several other OMTs that appear to be expressed in other Catharanthus tissues. The results provide compelling evidence that most of the pathway for vindoline biosynthesis including the 0- methylation of 16-hydroxytabersonine occurs exclusively in leaf epidermis, with subsequent steps occurring in other leaf cell types. Small molecule O-methyltransferases (OMTs) (E.C. 2.1.1.6.x) catalyze the transfer of the reactive methyl group of S-adenosyl-L-methionine (SAM) to free hydroxyl groups of acceptor molecules. Plant OMTs, unlike their monomeric mammalian homologues, exist as functional homodimers. While the biological advantages for dimer fonnation with plant OMTs remain to be established, studies with OMTs from the benzylisoquinoline producing plant, Thalictrum tuberosum, showed that co-expression of 2 recombinant OMTs produced novel substrate specificities not found when each rOMT was expressed individually (Frick, Kutchan, 1999) . These results suggest that OMTs can fonn heterodimers that confer novel substrate specificities not possible with the homodimer alone. The present study describes a 160MT model based strategy attempting to modify the substrate specificity by site-specific mutagenesis. Our failure to generate altered substrate acceptance profiles in our 160MT mutants has lead us to study the biochemical properties ofhomodimers and heterodimers. Experimental evidence is provided to show that active sites found on OMT dimers function independently and that bifunctional heterodimeric OMTs may be fonned in vivo to produce a broader and more diverse range of natural products in plants.
Resumo:
The mechanistic aspects of the 19-hydroxy1ation and aromatization of androgens were investigated. Fungal, bacterial and mammalian enzymatic activities were studied in this regard . The fungus Pell i cular~ fi1amentosa metabolized androst-4-ene-3 , 17-dione to the corresponding 110<' , 11 f and 14 0( hydroxylated derivatives. No ~19- hydroxylated products were isolated, although this transformation was previously observed for the C21-steroids . The intestinal bacterium Clostridi um paraputrific~ had been reported to aromatize androsten-4-ene-3,17-dione. In the present study, however, only the ring A reduced products , 17(3 - hydroxy-5f -andro8tane- 3-one and 5f-androstane-3,17-dione , were recovered . Human placental microsomes contain substantial aromatase activity and were employed in an effort to elucidate some of the mechanistic details of aromatization. Selectively deuterated steroidal substrates were employed as a probe in order to distinguish b'!tween certain of the mechanisms proposed for aromatization . Retention of deuterium at C4 and C6 was observed. It was concluded that no free intermediates allowing for loss of hydrogen from either of these two positions are implicated in this process . The involvement of a Schiff base enzyme-sup strate complex in aromatization was examined using the substrate 17f - hydroxyandrost-4-ene-3-one- 3_ 1BO. Since no loss of label was ob~erved, the implication of a Schiff base was discounted . Mixed label1ir~ studies were performed in order to determine if hydroxylation at C19 is a rate-determining process in aromatization . Isotope effects of 2 .1 and 1.7 were determined for the conversion of 17f - hydroxyandrost-4-ene-J-one-19,19,19-dJ and -19-dl respectively to estrogens. It was concluded from this that 19-hydroxylation is at l east a partially rate-determinjng process in aromatization. A homoenb~ation mechanism for 19-hydroxylation was not supported by the data obtained in this s tudy. In vitro 1JC NMR monitoring using l7f-hydroxyandrost-4-ene-Jone- 19-l3C was found not to be a successful approach in the study of steroid transformations, owing in part t o their low solubility in the incubation medium.
Resumo:
This research was carried out to obtain a convenient route for the synthesis of [7_ 14C]-p-hydroxy benzaldehyde. Section 1 of the thesis includes a route involving intermediates with protecting groups like benzyl and methyl ethers of the phenols. The benzyl ethers afforded the product in relatively better yield. The overall synthesis involves four steps. Section 2 describes the reactions carried out directly on phenols, and a three step pathway is obtained for the synthesis of p-hydroxy benzaldehyde, which was repeated on labelled compounds to obtain [7_14C]p- hydroxy benzaldehyde. The synthesis involves the reaction of p-bromophenol with Cu14CN to yield [7_ 14C]-p-cyano phenol, which is then reduced to the aldehyde by means of a simple and clean photolysis method. The same route was tried out to get 3,4-dihydroxybenzaldehyde and was found to work equally well for the synthesis of this compound. Section 3 deals with the isolation of labelled alkaloids, corydaline, protopine and reticu1ine from [2-3H,1-14C]-dopamine (3H/ 14C ratio = 4) fed Corydalis solida. 3H/14C ratios in the labelled alkaloids were determined. The uncorrected values showed almost 50% loss of 3H relative to 14C in reticuline, and roughly 75% loss of the 3H relative to 14C in corydaline and protopine.
Resumo:
Extracellular hyper-osmotic (HYPER) stress increases glucose uptake to defend cell volume, when compared to iso-osmotic (ISO) conditions in skeletal muscle. The purpose of this study was to determine a time course for changes in common signaling proteins involved in glucose uptake during acute hyper-osmotic stress in isolated mammalian skeletal muscle. Rat extensor digitorum longus (EDL) muscles were excised and incubated in a media formulated to mimic ISO (290 ± 10 mmol/kg) or HYPER (400 ± 10 mmol/kg) extracellular condition (Sigma Media-199). Signaling mechanisms were investigated by determining the phosphorylation states of Akt, AMPK, AS160, cPKC and ERK after 30, 45 and 60 minutes of incubation. AS160 was found to be significantly more phosphorylated in HYPER conditions compared to ISO after 30 minutes (p<0.01). It is speculated that AS160 phosphorylation increases glucose transporter 4 (GLUT4) content at the cell surface thereby facilitating an increase in glucose uptake under hyper-osmotic stress.
Resumo:
Monoterpenoid indole alkaloids (MIA) are among the largest and most complex group of nitrogen containing secondary metabolites that are characteristic of the Apocynaceae plant family including the most notable Catharanthus roseus. These compounds have demonstrated activity as successful drugs for treating various cancers, neurological disorders and cardiovascular conditions. Due to the low yields of these compounds and high pharmacological value, their biosynthesis is a major topic of study. Previous work highlighting the leaf epidermis and leaf surface as a highly active area in MIA biosynthesis and MIA accumulation has made the epidermis a major focus of this thesis. This thesis provides an in-depth analysis of the valuable technique of RNA in situ hybridization (ISH) and demonstrates the application of the technique to analyze the location of the biosynthetic steps involved in the production of MIAs. The work presented in this thesis demonstrates that most of the MIAs of Eurasian Vinca minor, African Tabernaemontana e/egans and five Amsonia species, including North American Amsonia hubrichitii and Mediterranean A. orienta/is, accumulate in leaf wax exudates, while the rest of the leaf is almost devoid of alkaloids. Biochemical studies on Vinca minor displayed high tryptophan decarboxylase (TOe) enzyme activity and protein expression in the leaf epidermis compared to whole leaves. ISH studies aimed at localizing TOe and strictosidine synthase suggest the upper and lower epidermis of V. minor and T. e/egans as probable significant production sites for MIAs that will accumulate on the leaf surface, however the results don't eliminate the possibility of the involvement of other cell types. The monoterpenoid precursor to all MIAs, secologanin, is produced through the MEP pathway occurring in two cell types, the IPAP cells (Gl0H) and epidermal cells (LAMT and SLS). The work presented in this thesis, localizes a novel enzymatic step, UDPG-7-deoxyloganetic acid glucosyltransferase (UGT8) to the IPAP cells of Catharanthus longifolius. These results enable the suggestion that all steps from Gl0H up to and including UGT8 occur in the IPAP cells of the leaf, making the IPAP cells the main site for the majority of secologanin biosynthesis. It also makes the IPAP cells a likely cell type to begin searching for the gene of the uncharacterized steps between Gl0H and UGT8. It also narrows the compound to be transported from the IPAP cells to either 7-deoxyloganic acid or loganic acid, which aids in the identification of the transportation mechanism.
Resumo:
The Madagascar periwinkle [Catharanthus roseus (L.) G. Don] is a commercially important horticultural flower species and is the only source for several pharmaceutically valuable monoterpenoid indole alkaloids (MIAs), including the powerful antihypertensive ajmalicine and the antineoplastic agents vincristine and vinblastine. While biosynthesis of MIA precursors has been elucidated, conversion of the common MIA precursor strictosidine to MIAs of different families, for example ajmalicine, catharanthine or vindoline, remains uncharacterized. Deglycosylation of strictosidine by the key enzyme Strictosidine beta-glucosidase (SGD) leads to a pool of uncharacterized reaction products that are diverted into the different MIA families, but the downstream reactions are uncharacterized. Screening of 3600 EMS (ethyl methane sulfonate) mutagenized C. roseus plants to identify mutants with altered MIA profiles yielded one plant with high ajmalicine, and low catharanthine and vindoline content. RNA sequencing and comparative bioinformatics of mutant and wildtype plants showed up-regulation of SGD and the transcriptional repressor Zinc finger Catharanthus transcription factor (ZCT1) in the mutant line. The increased SGD activity in mutants seems to yield a larger pool of uncharacterized SGD reaction products that are channeled away from catharanthine and vindoline towards biosynthesis of ajmalicine when compared to the wildtype. Further bioinformatic analyses, and crossings between mutant and wildtype suggest a transcription factor upstream of SGD and ZCT1 to be mutated, leading to up-regulation of Sgd and Zct1. The crossing experiments further show that biosynthesis of the different MIA families is differentially regulated and highly complex. Three new transcription factors were identified by bioinformatics that seem to be involved in the regulation of Zct1 and Sgd expression, leading to the high ajmalicine phenotype. Increased cathenamine reductase activity in the mutant converts the pool of SGD reaction products into ajmalicine and its stereoisomer tetrahydroalstonine. The stereochemistry of ajmalicine and tetrahydroalstonine biosynthesis in vivo and in vitro was further characterized. In addition, a new clade of perakine reductase-like enzymes was identified that reduces the SGD reaction product vallesiachotamine in a stereo-specific manner, characterizing one of the many reactions immediately downstream of SGD that determine the different MIA families. This study establishes that RNA sequencing and comparative bioinformatics, in combination with molecular and biochemical characterization, are valuable tools to determine the genetic basis for mutations that trigger phenotypes, and this approach can also be used for identification of new enzymes and transcription factors.
Resumo:
Acute alterations in cell volume can substantively modulate subsequent metabolism of substrates. However, how such alterations in skeletal muscle modulate protein metabolism is limited. The purpose of this study was to determine the time dependent influence of extracellular osmotic stress on protein turnover in skeletal muscle cells. L6 cells were incubated in hyperosmotic (HYPER; 425.3 ± 1.8mmol/kg), hypo-osmotic (HYPO; 235.4 ± 1.0mmol/kg) or control (CON; 333.5 ± 1.4mmol/kg) media for 4, 8, 12, or 24hrs. During the final 4hrs, incorporation of L-[ring-3,5-3H]-tyrosine was measured to estimate protein synthesis. Western blotting measured markers of protein synthesis and degradation. No differences were observed in any outcomes except p70S6K phosphorylation whereby HYPO was lower (p<0.05) than CON and HYPER; which remained similar except for a large increase at 8hrs for HYPER. These findings suggest that regardless of duration, extracellular osmotic stress does not significantly affect protein metabolism in L6 cells.
Resumo:
The purpose of this study was to examine the effects of increased extracellular leucine concentration on protein metabolism in skeletal muscle cells when exposed to 3 different osmotic stresses. L6 skeletal muscle cells were incubated in either a normal or supplemental leucine (1.5mM) medium set to hypo-osmotic (230 ± 10 Osm), iso-osmotic (330 ± 10 Osm) or hyper-osmotic (440 ± 10 Osm) conditions. 3H-tyrosine was used to quantify protein synthesis. Western blotting analysis was performed to determine the activation of mTOR, p70S6k, ubiquitin, actin, and μ-calpain. Hypo-osmotic stress resulted in the greatest increase in protein synthesis rate under the normal-leucine condition while iso-osmotic stress has the greatest increase under the elevated-leucine condition. Elevated-leucine condition had a decreased rate in protein degradation over the normal condition within the ubiquitin proteasome pathway (p<0.05). Leucine and hypo-osmotic stress therefore creates a favourable environment for anabolic events to occur.
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Glutamatergic dysfunction has been suggested to play an important role in the pathogenesis of hepatic encephalopathy (HE) in acute liver failure (ALF). Increased extracellular brain glutamate concentrations have consistently been described in different experimental animal models of ALF and in patients with increased intracranial pressure due to ALF. High brain ammonia levels remain the leading candidate in the pathogenesis of HE in ALF and studies have demonstrated a correlation between ammonia and increased concentrations of extracellular brain glutamate both clinically and in experimental animal models of ALE Inhibition of glutamate uptake or increased glutamate release from neurons and/or astrocytes could cause an increase in extracellular glutamate. This review analyses the effect of ammonia on glutamate release from (and uptake into) both neurons and astrocytes and how these pathophysiological mechanisms may be involved in the pathogenesis of HE in ALF.
Resumo:
We previously demonstrated in pigs with acute liver failure (ALF) that albumin dialysis using the molecular adsorbents recirculating system (MARS) attenuated a rise in intracranial pressure (ICP). This was independent of changes in arterial ammonia, cerebral blood flow and inflammation, allowing alternative hypotheses to be tested. The aims of the present study were to determine whether changes in cerebral extracellular ammonia, lactate, glutamine, glutamate, and energy metabolites were associated with the beneficial effects of MARS on ICP. Three randomized groups [sham, ALF (induced by portacaval anastomosis and hepatic artery ligation), and ALF+MARS] were studied over a 6-hour period with a 4-hour MARS treatment given beginning 2 hours after devascularization. Using cerebral microdialysis, the ALF-induced increase in extracellular brain ammonia, lactate, and glutamate was significantly attenuated in the ALF+MARS group as well as the increases in extracellular lactate/pyruvate and lactate/glucose ratios. The percent change in extracellular brain ammonia correlated with the percent change in ICP (r(2) = 0.511). Increases in brain lactate dehydrogenase activity and mitochondrial complex activity for complex IV were found in ALF compared with those in the sham, which was unaffected by MARS treatment. Brain oxygen consumption did not differ among the study groups. Conclusion: The observation that brain oxygen consumption and mitochondrial complex enzyme activity changed in parallel in both ALF- and MARS-treated animals indicates that the attenuation of increased extracellular brain ammonia (and extracellular brain glutamate) in the MARS-treated animals reduces energy demand and increases supply, resulting in attenuation of increased extracellular brain lactate. The mechanism of how MARS reduces extracellular brain ammonia requires further investigation.
Resumo:
Hyperammonemia is a feature of acute liver failure (ALF), which is associated with increased intracranial pressure (ICP) and brain herniation. We hypothesized that a combination of L-ornithine and phenylacetate (OP) would synergistically reduce toxic levels of ammonia by (1) L-ornithine increasing glutamine production (ammonia removal) through muscle glutamine synthetase and (2) phenylacetate conjugating with the ornithine-derived glutamine to form phenylacetylglutamine, which is excreted into the urine. The aims of this study were to determine the effect of OP on arterial and extracellular brain ammonia concentrations as well as ICP in pigs with ALF (induced by liver devascularization). ALF pigs were treated with OP (L-ornithine 0.07 g/kg/hour intravenously; phenylbutyrate, prodrug for phenylacetate; 0.05 g/kg/hour intraduodenally) for 8 hours following ALF induction. ICP was monitored throughout, and arterial and extracellular brain ammonia were measured along with phenylacetylglutamine in the urine. Compared with ALF + saline pigs, treatment with OP significantly attenuated concentrations of arterial ammonia (589.6 +/- 56.7 versus 365.2 +/- 60.4 mumol/L [mean +/- SEM], P= 0.002) and extracellular brain ammonia (P= 0.01). The ALF-induced increase in ICP was prevented in ALF + OP-treated pigs (18.3 +/- 1.3 mmHg in ALF + saline versus 10.3 +/- 1.1 mmHg in ALF + OP-treated pigs;P= 0.001). The value of ICP significantly correlated with the concentration of extracellular brain ammonia (r(2) = 0.36,P< 0.001). Urine phenylacetylglutamine levels increased to 4.9 +/- 0.6 micromol/L in ALF + OP-treated pigs versus 0.5 +/- 0.04 micromol/L in ALF + saline-treated pigs (P< 0.001).Conclusion:L-Ornithine and phenylacetate act synergistically to successfully attenuate increases in arterial ammonia, which is accompanied by a significant decrease in extracellular brain ammonia and prevention of intracranial hypertension in pigs with ALF.
Resumo:
Clostridium perfringens est ubiquitaire dans l’environnement. Ce microorganisme peut être retrouvé dans la flore normale du tractus gastro-intestinal des mammifères et peut également causer une variété d’infections intestinales. Le phénotype de résistance à la bacitracine a déjà été rapporté chez C. perfringens mais les gènes associés n’ont pas été caractérisés. Dans cette étude, 24 des 99 isolats de C. perfringens aviaires testés ont démontré une résistance à la bacitracine. Les analyses ont révélé la présence d’un transporteur ABC ainsi que d’une undécaprénol kinase surproduite. Ces deux mécanismes semblent être codés par l’opéron bcrABDR. En amont et en aval des gènes bcr, un élément IS1216-like a été identifié, celui-ci pouvant jouer un rôle dans la dissémination de la résistance à la bacitracine. Des analyses d’hybridation sur ADN ont révélé que les gènes bcrABDR étaient localisés sur le chromosome. De plus, il a été démontré que les gènes bcr étaient exprimés en présence de bacitracine. Plusieurs études ont associé la tolérance aux antibiotiques et aux désinfectants à la formation de biofilm. Dans la littérature, peu d’informations sont disponibles sur le biofilm de C. perfringens. La majorité des isolats testés dans cette étude ont démontré la formation d’un biofilm. L’analyse de la matrice a démontré que celle-ci contenait des protéines, de l’ADN extracellulaire ainsi que des polysaccharides liés en bêta-1,4. Une meilleure survie des cellules en biofilm a été observée suite à une exposition à de fortes concentrations d’antibiotiques. Une exposition à de faibles doses de certains antibiotiques semblait diminuer le biofilm formé alors que pour d’autres, le biofilm semblait augmenter. Dans la présente étude, la susceptibilité des biofilms de C. perfringens à la désinfection a été également analysée. Les résultats ont démontré que la formation de biofilm protégeait les cellules de l’action du monopersulfate de potassium, des ammoniums quaternaires, du peroxyde d’hydrogène et du glutéraldéhyde. Toutefois, l’hypochlorite de sodium a été démontré comme étant efficace contre le biofilm de C. perfringens. Il a été démontré que les biofilms mixtes de C. perfringens cultivés en présence de Staphylococcus aureus ou d’Escherichia coli étaient plus résistants à la désinfection en comparaison aux biofilms simples de S. aureus ou d’E. coli. Toutefois, le biofilm simple de C. perfringens était plus résistant à la désinfection que les biofilms mixtes. Finalement, les profils de transcription entre les populations planctoniques et en biofilm ont été analysés par séquençage d’ARN. L’analyse transcriptomique du biofilm a identifié 238 gènes différentiellement exprimés entre les deux conditions. Les gènes négativement régulés sont impliqués dans la virulence, la production d’énergie, le métabolisme des sucres ainsi que dans la biosynthèse des acides gras et des acides aminés alors que les gènes induits sont impliqués dans la réponse au stress et au stress oxydatif, dans la biosynthèse d’acides gras et de phospholipides ainsi que dans la virulence. Cette étude décrit pour la première fois la découverte des gènes associés à la résistance à la bacitracine chez C. perfringens. Elle rapporte également de nouvelles données sur la matrice du biofilm, la tolérance aux antibiotiques et aux désinfectants ainsi que sur le transcriptome du biofilm de C. perfringens.