862 resultados para EVOLUTIONARY
Resumo:
The trajectory planning of redundant robots is an important area of research and efficient optimization algorithms have been investigated in the last years. This paper presents a new technique that combines the closed-loop pseudoinverse method with genetic algorithms. In this case the trajectory planning is formulated as an optimization problem with constraints.
Resumo:
This paper presents a brief history of the western music: from its genesis to serialism and the Darmstadt school. Also some mathematical aspects of music are then presented and confronted with music as a form of art. The question is, are these two distinct aspects compatible? Can computers be of real help in automatic composition? The more appealing algorithmic approach is evolutionary computation as it offers creativity potential. Therefore, the Evolutionary Algorithms are then introduced and some results of GAs and GPs application to music generation are analysed.
Resumo:
The trajectory planning of redundant robots is an important area of research and efficient optimization algorithms are needed. The pseudoinverse control is not repeatable, causing drift in joint space which is undesirable for physical control. This paper presents a new technique that combines the closed-loop pseudoinverse method with genetic algorithms, leading to an optimization criterion for repeatable control of redundant manipulators, and avoiding the joint angle drift problem. Computer simulations performed based on redundant and hyper-redundant planar manipulators show that, when the end-effector traces a closed path in the workspace, the robot returns to its initial configuration. The solution is repeatable for a workspace with and without obstacles in the sense that, after executing several cycles, the initial and final states of the manipulator are very close.
Resumo:
Land plant evolution required the generation of a new body plan that could resist the harsher and fluctuating environmental conditions found outside of aquatic environments. Unraveling the genetic basis of plant developmental innovations is not only revealing in terms of an evolutionary point of view, but it is also important for understanding the emergence of agronomically important traits. Comparative genetic studies between basal and modern land plants, both at the genome and trancriptome levels, can help in the generation of hypotheses related to the genetic basis of plant evolutionary development.(...)
Resumo:
The obligate intracellular bacterium Chlamydia trachomatis is a human pathogen of major public health significance. Strains can be classified into 15 main serovars (A to L3) that preferentially cause ocular infections (A-C), genital infections (D-K) or lymphogranuloma venereum (LGV) (L1-L3), but the molecular basis behind their distinct tropism, ecological success and pathogenicity is not welldefined. Most chlamydial research demands culture in eukaryotic cell lines, but it is not known if stains become laboratory adapted. By essentially using genomics and transcriptomics, we aimed to investigate the evolutionary patterns underlying the adaptation of C. trachomatis to the different human tissues, given emphasis to the identification of molecular patterns of genes encoding hypothetical proteins, and to understand the adaptive process behind the C. trachomatis in vivo to in vitro transition. Our results highlight a positive selection-driven evolution of C. trachomatis towards nichespecific adaptation, essentially targeting host-interacting proteins, namely effectors and inclusion membrane proteins, where some of them also displayed niche-specific expression patterns. We also identified potential "ocular-specific" pseudogenes, and pointed out the major gene targets of adaptive mutations associated with LGV infections. We further observed that the in vivo-derived genetic makeup of C. trachomatis is not significantly compromised by its long-term laboratory propagation. In opposition, its introduction in vitro has the potential to affect the phenotype, likely yielding virulence attenuation. In fact, we observed a "genital-specific" rampant inactivation of the virulence gene CT135, which may impact the interpretation of data derived from studies requiring culture. Globally, the findings presented in this Ph.D. thesis contribute for the understanding of C.trachomatis adaptive evolution and provides new insights into the biological role of C. trachomatishypothetical proteins. They also launch research questions for future functional studies aiming toclarify the determinants of tissue tropism, virulence or pathogenic dissimilarities among C. trachomatisstrains.
Resumo:
The environment can modify developmental trajectories and generate a range of distinct phenotypes without altering an organism’s genome, a widespread phenomenon called developmental plasticity. The past decades have seen a resurgent interest in understanding how developmental plasticity contributes to evolutionary processes, as it can produce phenotypic variation among individuals and facilitate diversification among populations that inhabit distinct ecological niches. To better understand the importance of plastic responses for evolutionary change, we need to explore how the environment alters development to produce phenotypic variation and then compare this to how genetic variation influences these same developmental processes.(...)
Resumo:
Rubisco is responsible for the fixation of CO2 into organic compounds through photosynthesis and thus has a great agronomic importance. It is well established that this enzyme suffers from a slow catalysis, and its low specificity results into photorespiration, which is considered as an energy waste for the plant. However, natural variations exist, and some Rubisco lineages, such as in C4 plants, exhibit higher catalytic efficiencies coupled to lower specificities. These C4 kinetics could have evolved as an adaptation to the higher CO2 concentration present in C4 photosynthetic cells. In this study, using phylogenetic analyses on a large data set of C3 and C4 monocots, we showed that the rbcL gene, which encodes the large subunit of Rubisco, evolved under positive selection in independent C4 lineages. This confirms that selective pressures on Rubisco have been switched in C4 plants by the high CO2 environment prevailing in their photosynthetic cells. Eight rbcL codons evolving under positive selection in C4 clades were involved in parallel changes among the 23 independent monocot C4 lineages included in this study. These amino acids are potentially responsible for the C4 kinetics, and their identification opens new roads for human-directed Rubisco engineering. The introgression of C4-like high-efficiency Rubisco would strongly enhance C3 crop yields in the future CO2-enriched atmosphere.
Resumo:
The evolution of grasses using C4 photosynthesis and their sudden rise to ecological dominance 3 to 8 million years ago is among the most dramatic examples of biome assembly in the geological record. A growing body of work suggests that the patterns and drivers of C4 grassland expansion were considerably more complex than originally assumed. Previous research has benefited substantially from dialog between geologists and ecologists, but current research must now integrate fully with phylogenetics. A synthesis of grass evolutionary biology with grassland ecosystem science will further our knowledge of the evolution of traits that promote dominance in grassland systems and will provide a new context in which to evaluate the relative importance of C4 photosynthesis in transforming ecosystems across large regions of Earth.
Resumo:
SAMHD1 has recently been identified as an HIV-1 restriction factor operating in myeloid cells. As a countermeasure, the Vpx accessory protein from HIV-2 and certain lineages of SIV have evolved to antagonize SAMHD1 by inducing its ubiquitin-proteasome-dependent degradation. Here, we show that SAMHD1 experienced strong positive selection episodes during primate evolution that occurred in the Catarrhini ancestral branch prior to the separation between hominoids (gibbons and great apes) and Old World monkeys. The identification of SAMHD1 residues under positive selection led to mapping the Vpx-interaction domain of SAMHD1 to its C-terminal region. Importantly, we found that while SAMHD1 restriction activity toward HIV-1 is evolutionarily maintained, antagonism of SAMHD1 by Vpx is species-specific. The distinct evolutionary signature of SAMHD1 sheds light on the development of its antiviral specificity.
Resumo:
The CD209 gene family that encodes C-type lectins in primates includes CD209 (DC-SIGN), CD209L (L-SIGN) and CD209L2. Understanding the evolution of these genes can help understand the duplication events generating this family, the process leading to the repeated neck region and identify protein domains under selective pressure. We compiled sequences from 14 primates representing 40 million years of evolution and from three non-primate mammal species. Phylogenetic analyses used Bayesian inference, and nucleotide substitutional patterns were assessed by codon-based maximum likelihood. Analyses suggest that CD209 genes emerged from a first duplication event in the common ancestor of anthropoids, yielding CD209L2 and an ancestral CD209 gene, which, in turn, duplicated in the common Old World primate ancestor, giving rise to CD209L and CD209. K(A)/K(S) values averaged over the entire tree were 0.43 (CD209), 0.52 (CD209L) and 0.35 (CD209L2), consistent with overall signatures of purifying selection. We also assessed the Toll-like receptor (TLR) gene family, which shares with CD209 genes a common profile of evolutionary constraint. The general feature of purifying selection of CD209 genes, despite an apparent redundancy (gene absence and gene loss), may reflect the need to faithfully recognize a multiplicity of pathogen motifs, commensals and a number of self-antigens
Resumo:
Adaptive dynamics shows that a continuous trait under frequency dependent selection may first converge to a singular point followed by spontaneous transition from a unimodal trait distribution into a bimodal one, which is called "evolutionary branching". Here, we study evolutionary branching in a deme-structured population by constructing a quantitative genetic model for the trait variance dynamics, which allows us to obtain an analytic condition for evolutionary branching. This is first shown to agree with previous conditions for branching expressed in terms of relatedness between interacting individuals within demes and obtained from mutant-resident systems. We then show this branching condition can be markedly simplified when the evolving trait affect fecundity and/or survival, as opposed to affecting population structure, which would occur in the case of the evolution of dispersal. As an application of our model, we evaluate the threshold migration rate below which evolutionary branching cannot occur in a pairwise interaction game. This agrees very well with the individual-based simulation results.
Resumo:
Gene copies that stem from the mRNAs of parental source genes have long been viewed as evolutionary dead-ends with little biological relevance. Here we review a range of recent studies that have unveiled a significant number of functional retroposed gene copies in both mammalian and some non-mammalian genomes. These studies have not only revealed previously unknown mechanisms for the emergence of new genes and their functions but have also provided fascinating general insights into molecular and evolutionary processes that have shaped genomes. For example, analyses of chromosomal gene movement patterns via RNA-based gene duplication have shed fresh light on the evolutionary origin and biology of our sex chromosomes.
Resumo:
Seven crayfish species from three genera of the subfamily Cambarinae were electrophoretically examined for genetic variation at a total of twenty-six loci. Polymorphism was detected primarily at three loci: Ao-2, Lap, and Pgi. The average heterozygosities over-all loci for each species were found to be very low when compared to most other invertebrate species that have been examined electrophoretically. With the exception of Cambarus bartoni, the interpopulation genetic identities are high within any given species. The average interspecific identities are somewhat lower and the average intergeneric identities are lower still. Populations, species and genera conform to the expected taxonomic progression. The two samples of ~ bartoni show high genetic similarity at only 50 percent of the loci compared. Locus by locus identity comparisons among species yield U-shaped distributions of genetic identities. Construction of a phylogenetic dendrogram using species mean genetic distances values shows that species grouping is in agreement with morphological taxonomy with the exception of the high similarity between Orconectespropinquus and Procambarus pictus. This high similarity suggests the possibility of a regulatory change between the two species. It appears that the low heterozygosities, high interpopulation genetic identities, and taxonomic mispositioning can all be explained on the basis of low mutation rates.
Resumo:
A feature-based fitness function is applied in a genetic programming system to synthesize stochastic gene regulatory network models whose behaviour is defined by a time course of protein expression levels. Typically, when targeting time series data, the fitness function is based on a sum-of-errors involving the values of the fluctuating signal. While this approach is successful in many instances, its performance can deteriorate in the presence of noise. This thesis explores a fitness measure determined from a set of statistical features characterizing the time series' sequence of values, rather than the actual values themselves. Through a series of experiments involving symbolic regression with added noise and gene regulatory network models based on the stochastic 'if-calculus, it is shown to successfully target oscillating and non-oscillating signals. This practical and versatile fitness function offers an alternate approach, worthy of consideration for use in algorithms that evaluate noisy or stochastic behaviour.