984 resultados para ENZYME-KINETICS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The polyamines putrescine, spermidine, and spermine are organic cations that are required for cell growth and differentiation. Ornithine decarboxylase (ODC), the first and rate-limiting enzyme in the polyamine biosynthetic pathway, is a highly regulated enzyme. Methodology and Results: To use this enzyme as a potential drug target, the gene encoding putative ornithine decarboxylase (ODC)-like sequence was cloned from Entamoeba histolytica, a protozoan parasite causing amoebiasis. DNA sequence analysis revealed an open reading frame (ORF) of similar to 1,242 bp encoding a putative protein of 413 amino acids with a calculated molecular mass of 46 kDa and a predicted isoelectric point of 5.61. The E. histolytica putative ODC-like sequence has 33% sequence identity with human ODC and 36% identity with the Datura stramonium ODC. The ORF is a single-copy gene located on a 1.9-Mb chromosome. The recombinant putative ODC protein (48 kDa) from E. histolytica was heterologously expressed in Escherichia coli. Antiserum against recombinant putative ODC protein detected a band of anticipated size similar to 46 kDa in E. histolytica whole-cell lysate. Difluoromethylornithine (DFMO), an enzyme-activated irreversible inhibitor of ODC, had no effect on the recombinant putative ODC from E. histolytica. Comparative modeling of the three-dimensional structure of E. histolytica putative ODC shows that the putative binding site for DFMO is disrupted by the substitution of three amino acids-aspartate-332, aspartate-361, and tyrosine-323-by histidine-296, phenylalanine-305, and asparagine-334, through which this inhibitor interacts with the protein. Amino acid changes in the pocket of the E. histolytica enzyme resulted in low substrate specificity for ornithine. It is possible that the enzyme has evolved a novel substrate specificity. Conclusion: To our knowledge this is the first report on the molecular characterization of putative ODC-like sequence from E. histolytica. Computer modeling revealed that three of the critical residues required for binding of DFMO to the ODC enzyme are substituted in E. histolytica, resulting in the likely loss of interactions between the enzyme and DFMO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of the present study is to develop the reaction mechanism and kinetics of photoreduction of NO by CO. For this purpose, the reactions were conducted in the presence of Pd-ion-substituted nano-TiO2, Ti1-xPdxO2-delta, which was synthesized via a solution combustion method. The photocatalytic activity was investigated with unsubstituted TiO2, 1% Pd/TiO2(imp), and Ti1-xPdxO2-delta (where x = 0.05-0.3). No appreciable NO conversion was observed over unsubstituted TiO2, although, despite competitive adsorption of NO and CO on the Pd2+ sites, there was a significant reduction of NO over Ti1-xPdxO2-delta. The kinetic model showed that the enhanced catalytic activity is due to the NO photodissociation at the oxide-ion vacancy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laskowski inhibitors regulate serine proteases by an intriguing mode of action that involves deceiving the protease into synthesizing a peptide bond. Studies exploring naturally occurring Laskowski inhibitors have uncovered several structural features that convey the inhibitor's resistance to hydrolysis and exceptional binding affinity. However, in the context of Laskowski inhibitor engineering, the way that various modifications intended to fine-tune an inhibitor's potency and selectivity impact on its association and dissociation rates remains unclear. This information is important as Laskowski inhibitors are becoming increasingly used as design templates to develop new protease inhibitors for pharmaceutical applications. In this study, we used the cyclic peptide, sunflower trypsin inhibitor-1 (SFTI-1), as a model system to explore how the inhibitor's sequence and structure relate to its binding kinetics and function. Using enzyme assays, MD simulations and NMR spectroscopy to study SFTI variants with diverse sequence and backbone modifications, we show that the geometry of the binding loop mainly influences the inhibitor's potency by modulating the association rate, such that variants lacking a favourable conformation show dramatic losses in activity. Additionally, we show that the inhibitor's sequence (including both the binding loop and its scaffolding) influences its potency and selectivity by modulating both the association and the dissociation rates. These findings provide new insights into protease inhibitor function and design that we apply by engineering novel inhibitors for classical serine proteases, trypsin and chymotrypsin and two kallikrein-related peptidases (KLK5 and KLK14) that are implicated in various cancers and skin diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effective “hydrodynamic” radii governing infiltration kinetics of reactive Al-Mg melts into alumina preforms were found to be three orders of magnitude smaller than the average pore size of the packed bed and also smaller compared with the kinetics for a nonreactive system. A sinusoidal capillary model was developed to predict flow kinetics within the packed bed. For the reactive system, two factors were ascribed for additional melt retardation: (1) different intrinsic wettabilities of the two liquids on alumina, thereby leading to significantly different “effective” local contact angles; and (2) local solute depletion from the meniscus, which was incorporated as a time-dependent contact angle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The enzyme UDP-galactose-4-epimerase (GAL10) catalyzes a key step in galactose metabolism converting UDP-galactose to UDPglucose which then can get metabolized through glycolysis and TCA cycle thus allowing the cell to use galactose as a carbon and energy source. As in many fungi, a functional homolog of GAL10 exists in Candida albicans. The domainal organization of the homologs from Saccharomyces cerevisiae and C albicans show high degree of homology having both mutarotase and an epimerase domain. The former is responsible for the conversion of beta-D-galactose to alpha-D-galactose and the hitter for epimerization of UDP-galactose to UDP-glucose. Absence of C albicans GAL10 (CaGAL10) affects cell-wall organization, oxidative stress response, biofilm formation and filamentation. Cagal10 mutant cells tend to flocculate extensively as compared to the wild-type cells. The excessive filamentation in this mutant is reflected in its irregular and wrinkled colony morphology. Cagal10 strain is more susceptible to oxidative stress when tested in presence of H2O2. While the S. cerevsiae GAL10 (ScGAL10), essential for survival in the presence of galactose, has not been reported to have defects in the absence of galactose, the C albicans homolog shows these phenotypes during growth in the absence of galactose. Thus a functional CaGal10 is required not only for galactose metabolism but also for normal hyphal morphogenesis, colony morphology, maintenance of cell-wall integrity and for resistance to oxidative stress even in the absence of galactose. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peptidyl-tRNA hydrolase cleaves the ester bond between tRNA and the attached peptide in peptidyl-tRNA in order to avoid the toxicity resulting from its accumulation and to free the tRNA available for further rounds in protein synthesis. The structure of the enzyme from Mycobacteritan tuberculosis has been determined in three crystal forms. This structure and the structure of the enzyme frorn Escherichia coli in its crystal differ substantially on account of the binding of the C terminus of the E. coli enzyme to the peptide-binding site of a neighboring molecule in the crystal. A detailed examination of this difference led to an elucidation of the plasticity of the binding site of the enzyme. The peptide-binding site of the enzyme is a cleft between the body, of the molecule and a polypepticle Y stretch involving a loop and a helix. This stretch is in the open conformation when the enzyme is in the free state as in the crystals of M. tuberculosis peptidyl-tRNA hydrolase. Furthermore, there is no physical continuity between the tRNA and the peptide-binding sites. The molecule in the E. coli crystal mimics the peptide-bound enzyme molecule. The peptide stretch referred to earlier now closes on the bound peptide. Concurrently, a channel connecting the tRNA and the peptide-binding site opens primarily through the concerted movement of two residues. Thus, the crystal structure of M. tuberculosis peptidyl-tRNA hydrolase when compared with the crystal structure of the E. coli enzyme, leads to a model of structural changes associated with enzyme action on the basis of the plasticity of the molecule. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transesterification of methyl butyrate, ethyl butyrate and butyl butyrate to geranyl butyrate was investigated in supercritical carbon dioxide. The effect of chain length of the butyrate on the rate of transesterification was investigated. The initial rates followed the trend: ethyl butyrate < butyl butyrate < methyl butyrate. The transesterification of butyl butyrate to geranyl butyrate in various supercritical fluids such as ethylene, methane, ethane was also examined. The initial rate of transesterification of butyl butyrate in different supercritical fluids followed the order: ScCO2 < ScC2H6 < ScC2H4 < ScCH4. The highest initial rate was obtained in supercritical methane and the reasons for this observation were proposed. The Ping-Pong Bi-Bi model with inhibition by both acid and alcohol was used to model the experimental data and determine the kinetics of the reaction. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The esterification of propionic acid was investigated using three different alcohols, namely, isopropyl alcohol, isobutyl alcohol, and isoamyl alcohol. The variation of conversion with time for the synthesis of isoamyl propionate was investigated in the presence of five enzymes. Novozym 435 showed the highest activity, and this was used as the enzyme for investigating the various parameters that influence the esterification reaction. The Ping-Pong Bi-Bi model with inhibition by both acid and alcohol was used to model the experimental data and determine the kinetics of the esterification reaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Groundnut bud necrosis virus (GBNV), a member of genus Tospovirus in the family Bunyaviridae, infects a large number of leguminosae and solanaceae plants in India. With a view to elucidate the function of nonstructural protein, NSs encoded by the small RNA genome (S RNA), the NSs protein of GBNV-tomato (Karnataka) [1] was over-expressed in E.coli and purified by Ni-NTA chromatography. The purified rNSs protein exhibited an RNA stimulated NTPase activity. Further, this activity was metal ion dependent and was inhibited by adenosine 5' (beta, gamma imido) triphosphate, an ATP analog. The rNSs could also hydrolyze dATP.Interestingly, in addition to the NTPase and dATPase activities, the rNSs exhibited ATP independent 5' RNA/DNA phosphatase activity that was completely inhibited by AMP. The 5' alpha phosphate could be removed from ssDNA, ssRNA, dsDNA and dsRNA thus confirming that rNSs has a novel 5' alpha phosphatase activity. K189A mutation in the Walker motif A (GxxxxGKT) resulted in complete loss of ATPase activity, but the 5'phosphatase activity was unaffected. On the other hand, D159A mutation in the Walker motif B (DExx) resulted in partial loss of both the activities. These results demonstrate for the first time that NSs is a bifunctional enzyme, which could participate in viral movement, replication or in suppression of the host defense mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Asian elephants (Dephas maximus), prominent ``flagship species'', arelisted under the category of endangered species (EN - A2c, ver. 3.1, IUCN Red List 2009) and there is a need for their conservation This requires understanding demographic and reproductive dynamics of the species. Monitoring reproductive status of any species is traditionally being carried out through invasive blood sampling and this is restrictive for large animals such as wild or semi-captive elephants due to legal. ethical, and practical reasons Hence. there is a need for a non-invasive technique to assess reproductive cyclicity profiles of elephants. which will help in the species' conservation strategies In this study. we developed an indirect competitive enzyme linked immuno-sorbent assay (ELISA) to estimate the concentration of one of the progesterone-metabolites i.e, allopregnanolone (5 alpha-P-3OH) in fecal samples of As elephants We validated the assay which had a sensitivity of 0.25 mu M at 90% binding with an EC50 value of 1 37 mu M Using female elephants. kept under semi-captive conditions in the forest camps of Mudumalar Wildlife Sanctuary, Tamil Nadu and Bandipur National Park, Karnataka, India. we measured fecal progesterone-metabolite (5 alpha-P-3OH) concentrations in six an and showed their clear correlation with those of scrum progesterone measured by a standard radio-immuno assay. Statistical analyses using a Linear Mixed Effect model showed a positive correlation (P < 0 1) between the profiles of fecal 5 alpha-P-3OH (range 0 5-10 mu g/g) and serum progesterone (range: 0 1-1 8 ng/mL) Therefore, our studies show, for the first time, that the fecal progesterone-metabolite assay could be exploited to predict estrus cyclicity and to potentially assess the reproductive status of captive and free-ranging female Asian elephants, thereby helping to plan their breeding strategy (C) 2010 Elsevier Inc.All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study discusses grafting of methyl methacrylate units from thepolymeric soybean oil peroxide to produce poly(soybean oil-graft-methyl methacrylate) (PSO-g-PMMA). The degradation of this copolymer in solution was evaluated in the presence of different lipases, viz Candida rugosa (CR), Lipolase 100T (LP), Novozym 435 (N435) and Porcine pancreas (PP), at different temperatures The copolymer degraded by specific chain end scission and the mass fraction of the specific product evolved was determined The degradation was modeled using continuous distribution kinetics to determine the rate coefficients ofmenzymatic chain end scission and deactivation of the enzyme The enzymes, CR. LP and N435 exhibited maximum activity for the degradation of PSO-g-PMMA at 60 degrees C, while PP was most active at 50 degrees C. The thermal degradability of the copolymer, assessed by thermo-gravimetry, indicated that the activation energy of degradation of the copolymer was 154 kJ mol(-1), which was lesser than that of the PMMA homopolymer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peptidyl-tRNA hydrolase cleaves the ester bond between tRNA and the attached peptide in peptidyl-tRNA in order to avoid the toxicity resulting from its accumulation and to free the tRNA available for further rounds in protein synthesis. The structure of the enzyme from Mycobacteritan tuberculosis has been determined in three crystal forms. This structure and the structure of the enzyme frorn Escherichia coli in its crystal differ substantially on account of the binding of the C terminus of the E. coli enzyme to the peptide-binding site of a neighboring molecule in the crystal. A detailed examination of this difference led to an elucidation of the plasticity of the binding site of the enzyme. The peptide-binding site of the enzyme is a cleft between the body, of the molecule and a polypepticle Y stretch involving a loop and a helix. This stretch is in the open conformation when the enzyme is in the free state as in the crystals of M. tuberculosis peptidyl-tRNA hydrolase. Furthermore, there is no physical continuity between the tRNA and the peptide-binding sites. The molecule in the E. coli crystal mimics the peptide-bound enzyme molecule. The peptide stretch referred to earlier now closes on the bound peptide. Concurrently, a channel connecting the tRNA and the peptide-binding site opens primarily through the concerted movement of two residues. Thus, the crystal structure of M. tuberculosis peptidyl-tRNA hydrolase when compared with the crystal structure of the E. coli enzyme, leads to a model of structural changes associated with enzyme action on the basis of the plasticity of the molecule. (c) 2007 Elsevier Ltd. All rights reserved.