989 resultados para ELEVATED CO2
Resumo:
Intertidal marine macroalgae experience periodical exposures during low tide due to their zonational distribution. The duration of such emersion leads to different exposures of the plants to light and aerial CO2, which then affect the physiology of them to different extents. The ecophysiological responses to light and CO2 were investigated during emersion in two red algae Gloiopeltis furcata and Gigartina intermedia, and two brown algae Petalonia fascia and Sargassum hemiphyllum, growing along the Shantou coast of China. The light-saturated net photosynthesis in G. furcata and P. fascia showed an increase followed by slightly desiccation, whereas that in G. intermedia and S. hemiphyllum exhibited a continuous decrease with water loss. In addition, the upper-zonated G. furcata and P. fascia, exhibited higher photosynthetic tolerance to desiccation and required higher light level to saturate their photosynthesis than the lower-zonated G. intemedia and S. hemiphyllum. Desiccation had less effect on dark respiration in these four algae compared with photosynthesis. The light-saturated net photosynthesis increased with increased CO2 concentrations, being saturated at CO2 concentrations higher than the present atmospheric level in G. furcata, G. intermedia and S. hemiphyllum during emersion. It was evident that the relative enhancement of photosynthesis by elevated CO, in those three algae increased, though the absolute values of photosynthetic enhancement owing to CO2 increase were reduced when the desiccation statuses became more severe. However, in the case of desiccated P. fascia (water loss being greater than 20 %), light saturated net photosynthesis was saturated with current ambient atmospheric CO2 level. It is proposed that increasing atmospheric CO2 will enhance the daily photosynthetic production in intertidal macroalgae by varied extents that were related to the species and zonation.
Resumo:
大气CO2浓度升高可以通过植物间接影响土壤生态系统。土壤生态系统的结构和功能改变将影响有机质矿化和营养物质循环,进而可能对CO2浓度升高产生正反馈或负反馈。微生物是土壤生态系统的主体,在对CO2浓度升高的反馈中起着至关重要的作用。本研究以开顶箱系统为平台,采用微生物分子生态学技术和现代酶学技术,通过对长期接受500 ppm CO2的红松幼树、长白赤松幼树和蒙古栎幼树非根际土壤连续两个生长季的测定,系统研究了高浓度CO2对温带森林土壤微生物群落的生物量和微生物活性的影响,检测了土壤微生物群落的结构和功能以及土壤化学性质变化,主要结论如下: (1)高浓度CO2处理提高了土壤有机碳含量。与对照组相比较,红松幼树土壤有机碳含量提高9.4%;长白赤松幼树土壤提高0.6%;蒙古栎幼树土壤提高1.3%。 (2)高浓度CO2处理使土壤磷酸酶(phosphatase)、几丁质酶(1,4-β-acetylglucosaminidase, 1,4-β-NAG)和多酚氧化酶(phenol oxidase)活性发生了显著变化,高浓度CO2使红松土壤 1,4-β-NAG活性提高7-25%,长白松土壤1,4-β-NAG平均活性降低14%,蒙古栎土壤1,4-β-NAG平均活性提高31%。 同时研究还发现,过氧化物酶(peroxidase)和多酚氧化酶(phenol oxidase)活性与微生物量碳和微生物量氮呈显著的正相关。相关分析还显示,土壤湿度与1,4-α-葡萄糖苷酶(1,4-α-glucosidase)活性、 微生物生物量碳和微生物生物量氮呈显著的正相关。 高浓度CO2在不同程度上改变了土壤转化酶活性和脱氢酶活性。高浓度CO2显著提高了红松和长白赤松土壤硝化酶活性;而显著降低反硝化酶活性。 (3)研究发现三种树土壤的真菌和细菌群落存在着季节性演替,并且高浓度CO2熏蒸处理使真菌群落结构发生了显著的变化,表现为一些种群优势度下降,另一些升高。虽然,细菌群落没有如真菌群落变化的明显,但研究中也发现高浓度CO2的确使个别细菌种群的优势度发生了显著改变。 亲缘关系与Calocybe carnea,Magmatodrilus obscurus密切的真菌是红松土壤优势种群,与Humicola fuscoatra关系相近的是长白松土壤的优势种群,并且此三种真菌的季节性变化不显著。研究发现高浓度CO2使红松土壤中亲缘关系与Pachyella clypeata,Cochlonema euryblastum,Lepiota cristata,Eimeriidae sp., Trichoderma sp.相近的种群的丰富度显著提高,使蒙古栎土壤中亲缘关系与Serendipita vermifera,Calocybe carnea种群丰富度显著下降,使蒙古栎土壤中与Candida sp.,Magmatodrilus obscurus和Pachyella clypeata亲缘关系密切种群的丰富度显著提高。 (4)三种幼树叶的原位分解培养429天结果显示,红松和长白松凋落物的β-葡萄糖苷酶(1,4-β-glucosidase)和木糖苷酶(1,4-β-xylosidase)活性随着分解而逐渐增加,而这两种酶在蒙古栎凋落物分解过程中保持相对恒定;高浓度CO2显著影响叶凋落物分解磷酸酶(phosphatase),纤维二糖酶(cellobiohydrolase), 几丁质酶(1,4-β-NAG),多酚氧化酶(phenol oxidase)和过氧化物酶(peroxidase)的活性。研究发现,凋落物的生物化学性质变化能引起分解的微生物群落发生变化,进而引起分泌的胞外酶活性变化,科学印证了大气CO2浓度升高“通过影响凋落物质量进而影响分解叶凋落物的微生物群落的结构和功能”的猜测。 不同凋落物之间酶活性差异显著,真菌和细菌群落结构也显著不同。序列与Hyphodiscus hymeniophilus亲缘关系密切的真菌和亲缘关系与Verrucomicrobia bacterium密切的细菌是长白松凋落分解的最优势种群,序列与Lophium mytilinum亲缘关系密切的真菌是红松凋落分解的最优势种群。 另外,研究还发现,高浓度CO2使参与分解红松凋落物Beta proteobacterium OS-15A亲缘关系相近的细菌种群和与Azospirillum amazonense亲缘关系相近的种群丰富度显著降低;使与Luteibactor rhizovicina亲缘关系相近的种群和与Luteibactor rhizovicina亲缘关系相近的种群显著提高。高浓度CO2使定殖于长白松凋落物上Hyphodiscus hymeniophilus亲缘关系相近的种群和与Bionectria pityrodes亲缘关系相近的种群显著提高,而使与Neofabraea malicorticis亲缘关系相近的种群和与Hyphodiscus hymeniophilus亲缘关系相近的种群显著下降。
Resumo:
大气环境中O3和CO2浓度的升高已经引起了广泛关注,但二者交互作用对城市中树木光合生理的影响机制尚不清楚。蒙古栎(Quercus mongolica)、华山松(Pinus armandi)是沈阳市城市森林的两个重要树种,对大气环境变化的响应具有代表性。本文采用开顶箱法研究了在高浓度O3(80 nmol•mol-1)、CO2(700 μmol•mol-1)及其复合作用下沈阳市蒙古栎、华山松生长、光合、蒸腾的日动态、季节动态变化,揭示了高浓度O3、CO2及其复合作用对两树种光合生理的影响机制,为研究城市森林对全球变化的响应提供重要理论基础。 得出的主要结果如下: 1. 高浓度O3处理后,蒙古栎叶片表现为棕斑型伤害,华山松针叶则为叶尖变黄,两树种光合“午休”程度加重,叶片生长受到抑制。同时,可溶性蛋白、可溶性糖、淀粉含量降低。 两树种叶绿素含量降低,净光合速率下降。蒙古栎光合速率的降低前期主要表现为气孔限制,后期转为非气孔限制为主。华山松光合速率下降则主要受非气孔限制,表明其针叶气孔开闭对光合的影响要小于蒙古栎。造成两树种光合速率下降的非气孔因素是表观量子效率和羧化效率的降低。两树种光呼吸的升高是逆境下的一种保护机制。 在叶绿素荧光方面,两树种Fo、Fm、Fv/Fm、φPSII、ETR、qP降低,NPQ升高,表明高浓度O3作用下, PSII反应中心的开放程度降低、电子传递速率下降,用于光合光化学反应的光能减少,过剩能量增加,热耗散增加。 2. 高浓度CO2处理短期内提高了两树种叶片胞间CO2浓度、羧化效率、表观量子效率和光反应能力(φPSII、ETR和qP),从而提高了蒙古栎、华山松的净光合速率。一段时间后表现出光合下调的现象,羧化效率的降低和光反应能力(φPSII、ETR和qP)的下调可能是发生光合适应的主要原因。 高浓度CO2处理促进两树种叶片的生长,提高了可溶性蛋白、可溶性糖、淀粉含量。日变化曲线趋向单峰曲线,缓解了光合“午休”现象。 3. 复合处理效应,高CO2处理缓解了高O3处理的不利影响,减轻了高浓度O3对叶片的伤害,与单因子O3处理相比较,Pn、AQY、CE、Fv/Fm、qP升高,NPQ降低。另外,在叶片代谢产物、叶绿体色素含量、以及叶生长量的变化上缓解作用均有体现。
Resumo:
为了揭示UV-B辐射(11.66KJ/m2.d)和CO2浓度倍增复合作用对树木幼苗次生代谢产物变化规律及其对生长发育的影响,在室外用开顶箱,对白桦、红皮云杉和红松幼苗进行了模拟研究。结果表明,三种幼苗针叶片酚类含量增幅和变化趋势均不同。白桦类黄酮含量和305nm吸收值变化不大,红皮云杉和红松后期增加明显。白桦总黄酮和邻苯二酚含量增幅大于红皮云杉和红松。白桦和红松Chl和Car含量呈下降趋势,红皮云杉后期略有增加。白桦休眠侧芽极性小的酚类物质增加明显,根系酚类略有增加,枝条酚类无变化。红松越冬侧芽酚类和邻苯二酚含量增加明显。复合处理使三种幼苗PAL活性增加。酚类物质含量与其清除O-2和OH的能力基本成量效关系。单位多酚清除OH能力,红皮云杉>红松>白桦;多酚与蛋白质结合能力,白桦>红松>红皮云杉;MDA增幅,红松>白桦>红皮云杉。三种幼苗SOD活性后期增加明显。邻苯二酚对Chl、SOD、CAT活性和PSII有破坏作用。白桦酚类物质对SOD和CAT活性有破坏作用。复合处理对高生长抑制的程度白桦大于红松,而对红皮云杉影响不显著,体现UV-B和CO2处理的相互抵消作用。白桦根部生物量增加。红松针叶伸长受到抑制。可见,UV-B和CO2处理诱导的次生产物与幼苗生长发育有关。
Resumo:
In the frame of the European Project on Ocean Acidification (EPOCA), the response of an Arctic pelagic community (<3 mm) to a gradient of seawater pCO(2) was investigated. For this purpose 9 large-scale in situ mesocosms were deployed in Kongsfjorden, Svalbard (78 degrees 56.2' N, 11 degrees 53.6' E), in 2010. The present study investigates effects on the communities of particle-attached (PA; >3 mu m) and free-living (FL; <3 mu m > 0.2 mu m) bacteria by Automated Ribosomal Intergenic Spacer Analysis (ARISA) in 6 of the mesocosms, ranging from 185 to 1050 mu atm initial pCO(2), and the surrounding fjord. ARISA was able to resolve, on average, 27 bacterial band classes per sample and allowed for a detailed investigation of the explicit richness and diversity. Both, the PA and the FL bacterioplankton community exhibited a strong temporal development, which was driven mainly by temperature and phytoplankton development. In response to the breakdown of a picophytoplankton bloom, numbers of ARISA band classes in the PA community were reduced at low and medium CO2 (similar to 185-685 mu atm) by about 25 %, while they were more or less stable at high CO2 (similar to 820-1050 mu atm). We hypothesise that enhanced viral lysis and enhanced availability of organic substrates at high CO2 resulted in a more diverse PA bacterial community in the post-bloom phase. Despite lower cell numbers and extracellular enzyme activities in the post-bloom phase, bacterial protein production was enhanced in high CO2 mesocosms, suggesting a positive effect of community richness on this function and on carbon cycling by bacteria.
Resumo:
The ubiquitous marine trace gas dimethyl sulphide (DMS) comprises the greatest natural source of sulphur to the atmosphere and is a key player in atmospheric chemistry and climate. We explore the short term response of DMS and its algal precursor dimethyl sulphoniopropionate (DMSP) production and cycling to elevated carbon dioxide (CO2) and ocean acidification (OA) in five highly replicated 96 h shipboard bioassay experiments from contrasting sites in NW European shelf waters. In general, the response to OA throughout this region showed little variation, despite encompassing a range of biological and biogeochemical conditions. We observed consistent and marked increases in DMS concentrations relative to ambient controls, and decreases in DMSP concentrations. Quantification of rates of specific DMSP synthesis by phytoplankton and bacterial DMS gross production/consumption suggest algal processes dominated the CO2 response, likely due to a physiological response manifested as increases in direct cellular exudation of DMS and/or DMSP lyase enzyme activities. The variables and rates we report increase our understanding of the processes behind the response to OA. This could provide the opportunity to improve upon mesocosm-derived empirical modelling relationships, and move towards a mechanistic approach for predicting future DMS concentrations.
Resumo:
The ubiquitous marine trace gas dimethyl sulfide (DMS) comprises the greatest natural source of sulfur to the atmosphere and is a key player in atmospheric chemistry and climate. We explore the short-term response of DMS production and cycling and that of its algal precursor dimethyl sulfoniopropionate (DMSP) to elevated carbon dioxide (CO2) and ocean acidification (OA) in five 96 h shipboard bioassay experiments. Experiments were performed in June and July 2011, using water collected from contrasting sites in NW European waters (Outer Hebrides, Irish Sea, Bay of Biscay, North Sea). Concentrations of DMS and DMSP, alongside rates of DMSP synthesis and DMS production and consumption, were determined during all experiments for ambient CO2 and three high-CO2 treatments (550, 750, 1000 μatm). In general, the response to OA throughout this region showed little variation, despite encompassing a range of biological and biogeochemical conditions. We observed consistent and marked increases in DMS concentrations relative to ambient controls (110% (28–223%) at 550 μatm, 153% (56–295%) at 750 μatm and 225% (79–413%) at 1000 μatm), and decreases in DMSP concentrations (28% (18–40%) at 550 μatm, 44% (18–64%) at 750 μatm and 52% (24–72%) at 1000 μatm). Significant decreases in DMSP synthesis rate constants (μDMSP, d−1) and DMSP production rates (nmol d−1) were observed in two experiments (7–90% decrease), whilst the response under high CO2 from the remaining experiments was generally indistinguishable from ambient controls. Rates of bacterial DMS gross consumption and production gave weak and inconsistent responses to high CO2. The variables and rates we report increase our understanding of the processes behind the response to OA. This could provide the opportunity to improve upon mesocosm-derived empirical modelling relationships and to move towards a mechanistic approach for predicting future DMS concentrations.
Resumo:
This paper reviews research into the potential environmental impacts of leakage from geological storage of CO2 since the publication of the IPCC Special Report on Carbon Dioxide Capture and Storage in 2005. Possible impacts are considered on onshore (including drinking water aquifers) and offshore ecosystems. The review does not consider direct impacts on man or other land animals from elevated atmospheric CO2 levels. Improvements in our understanding of the potential impacts have come directly from CO2 storage research but have also benefitted from studies of ocean acidification and other impacts on aquifers and onshore near surface ecosystems. Research has included observations at natural CO2 sites, laboratory and field experiments and modelling. Studies to date suggest that the impacts from many lower level fault- or well-related leakage scenarios are likely to be limited spatially and temporarily and recovery may be rapid. The effects are often ameliorated by mixing and dispersion of the leakage and by buffering and other reactions; potentially harmful elements have rarely breached drinking water guidelines. Larger releases, with potentially higher impact, would be possible from open wells or major pipeline leaks but these are of lower probability and should be easier and quicker to detect and remediate.
Resumo:
The Baltic Sea is a unique environment as the largest body of brackish water in the world. Acidification of the surface oceans due to absorption of anthropogenic CO2 emissions is an additional stressor facing the pelagic community of the already challenging Baltic Sea. To investigate its impact on trace gas biogeochemistry, a large-scale mesocosm experiment was performed off Tvärminne Research Station, Finland in summer 2012. During the second half of the experiment, dimethylsulphide (DMS) concentrations in the highest fCO2 mesocosms (1075–1333 μatm) were 34 % lower than at ambient CO2 (350 μatm). However the net production (as measured by concentration change) of seven halocarbons analysed was not significantly affected by even the highest CO2 levels after 5 weeks exposure. Methyl iodide (CH3I) and diiodomethane (CH2I2) showed 15 % and 57 % increases in mean mesocosm concentration (3.8 ± 0.6 pmol L−1 increasing to 4.3 ± 0.4 pmol L−1 and 87.4 ± 14.9 pmol L−1 increasing to 134.4 ± 24.1 pmol L−1 respectively) during Phase II of the experiment, which were unrelated to CO2 and corresponded to 30 % lower Chl-ɑ concentrations compared to Phase I. No other iodocarbons increased or showed a peak, with mean chloroiodomethane (CH2ClI) concentrations measured at 5.3 (± 0.9) pmol L−1 and iodoethane (C2H5I) at 0.5 (± 0.1) pmol L−1. Of the concentrations of bromoform (CHBr3; mean 88.1 ± 13.2 pmol L−1), dibromomethane (CH2Br2; mean 5.3 ± 0.8 pmol L−1) and dibromochloromethane (CHBr2Cl, mean 3.0 ± 0.5 pmol L−1), only CH2Br2 showed a decrease of 17 % between Phases I and II, with CHBr3 and CHBr2Cl showing similar mean concentrations in both Phases. Outside the mesocosms, an upwelling event was responsible for bringing colder, high CO2, low pH water to the surface starting on day t16 of the experiment; this variable CO2 system with frequent upwelling events implies the community of the Baltic Sea is acclimated to regular significant declines in pH caused by up to 800 μatm fCO2. After this upwelling, DMS concentrations declined, but halocarbon concentrations remained similar or increased compared to measurements prior to the change in conditions. Based on our findings, with future acidification of Baltic Sea waters, biogenic halocarbon emissions are likely to remain at similar values to today, however emissions of biogenic sulphur could significantly decrease from this region.
Resumo:
Differential scanning calorimetry (DSC), temperature programmed desorption mass spectrometry (TPD-MS) and small angle neutron scattering (SANS) were used to investigate CO2 uptake by the Wyodak coal. The adsorption of carbon dioxide on Wyodak coal was studied by DSC. The exotherms evident at low temperatures are associated with the uptake of CO2 suggesting that carbon dioxide interacts strongly with the coal surface. The reduction in the value of the exotherms between the first and second runs for the Wyodak coal suggests that some CO2 is irreversibly bound to the structure even after heating to 200 °C DSC results also showed that adsorption of CO2 on the coal surface is an activated process and presumably at the temperature of the exotherms there is enough thermal energy to overcome the activation energy for adsorption. The adsorption process is instantly pursued by much slower diffusion of the gas molecules into the coal matrix (absorption). Structural rearrangement in coal by CO2 is examined by change in the glass transition temperature of coal after CO2 uptake at different pressures. The amount of gas dissolved in the coal increases with increasing CO2 pressure. TPD-MS showed that CO2 desorption from the Wyodak coal follows a first order kinetic model. Increase in the activation energy for desorption with pre-adsorbed CO2 pressure suggests that higher pressures facilitate the transport of CO2 molecules through the barriers therefore the amount of CO2 uptake by the coal is greater at higher pressures and more attempts are required to desorb CO2 molecules sorbed at elevated pressures. These conclusions were further confirmed by examining the Wyodak coal structure in high pressure CO 2 by SANS.
Resumo:
Small angle neutron scattering (SANS) has been applied to examine the effect of high pressure CO2 on the structure of Wyodak coal. Significant decrease in the scattering intensities upon exposure of the coal to high pressure CO2 showed that high pressure CO2 rapidly adsorbs on the coal and reaches to all pores in the structure. This is confirmed by strong and steep exothermic peaks observed on DSC scans during coal/ CO2 interactions. In situ small angle neutron scattering on coal at high pressure CO2 atmosphere showed an increase in scattering intensities with time suggesting that after adsorption, high pressure CO2 immediately begins to diffuse into the coal matrix, changes the macromolecular structure of the coal, swells the matrix and probably creates microporosity in coal structure by extraction of volatile components from coal. Significant decrease in the glass transition temperature of coal caused by high pressure CO2 also confirms that CO2 at elevated pressures dissolve in the coal matrix, results in significant plasticization and physical rearrangement of the coal’s macromolecular structure.
Resumo:
Sequestration of CO2 via biological sinks is a matter of great scientific importance due to the potential lowering of atmospheric CO2. In this study, a custom built incubation chamber was used to cultivate a soil microbial community to instigate chemoautotrophy of a temperate soil. Real-time atmospheric CO2 concentrations were monitored and estimations of total CO2 uptake were made. After careful background flux corrections, 4.52 +/- 0.05 g CO2 kg I dry soil was sequestered from the chamber atmosphere over 40 h. Using isotopically labelled (CO2)-C-13 and GCMS-IRMS, labelled fatty acids were identified after only a short incubation, hence confirming CO2 sequestration for soil. The results of this in vivo study provide the ground work for future studies intending to mimic the in situ environment by providing a reliable method for investigating CO2 uptake by soil microorganisms.(C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Dissertação de mestrado, Biologia Marinha, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015
Resumo:
Because of the economical relevance of sugarcane and its high potential as a source of biofuel, it is important to understand how this crop will respond to the foreseen increase in atmospheric [CO(2)]. The effects of increased [CO(2)] on photosynthesis, development and carbohydrate metabolism were studied in sugarcane (Saccharum ssp.). Plants were grown at ambient (similar to 370 ppm) and elevated (similar to 720 ppm) [CO(2)] during 50 weeks in open-top chambers. The plants grown under elevated CO(2) showed, at the end of such period, an increase of about 30% in photosynthesis and 17% in height, and accumulated 40% more biomass in comparison with the plants grown at ambient [CO(2)]. These plants also had lower stomatal conductance and transpiration rates (-37 and -32%, respectively), and higher water-use efficiency (c.a. 62%). cDNA microarray analyses revealed a differential expression of 35 genes on the leaves (14 repressed and 22 induced) by elevated CO(2). The latter are mainly related to photosynthesis and development. Industrial productivity analysis showed an increase of about 29% in sucrose content. These data suggest that sugarcane crops increase productivity in higher [CO(2)], and that this might be related, as previously observed for maize and sorghum, to transient drought stress.
Resumo:
Pós-graduação em Agronomia (Proteção de Plantas) - FCA