976 resultados para Dynamical variables
Resumo:
Geographic variation of Chevrier's field mouse (Apodemus chevrieri) (Milne-Edwards, 1868) (Muridae: Murinae) from southwestern China based on cranial morphometric variables. Zoological Studies 47(4): 393-401. A sample of 134 specimens of Apodemus chevrieri was investigated in the present study. Individuals were divided into male and female groups, and these were respectively subjected to multivariate analysis. Results indicated that 3 geographic populations of A. chevrieri inhabit southwestern China: a Sichuan population in western Sichuan Province; a northwestern Yunnan population ranging from northwestern Yunnan Province eastward to southern Sichuan Province; and a central Yunnan population in central Yunnan Province. In addition, a coefficient of difference analysis was performed among these 3 geographic populations. The results suggested that these 3 geographical populations of A. chevrieri belonged to 2 subspecies. Furthermore, we discuss the relationships of the subspecific differentiation of A. chevneri with changes in latitude in southwestern China.
Resumo:
A sample of 114 specimens of Dremomys pernyi was investigated, 73 of which had intact skulls and were subjected to multivariate, coefficient of difference (C. D.), and cluster analyses. Results indicate that 4 subspecies (groups) of Dremomys pernyi inhabi
Resumo:
A total of 66 specimens of Niviventer andersoni with intact skulls was investigated on pelage characteristics and cranial morphometric variables. The data were subjected to principal component analyses as well as to discriminant analyses, and measurement
Resumo:
We present the results of a computational study of the post-processed Galerkin methods put forward by Garcia-Archilla et al. applied to the non-linear von Karman equations governing the dynamic response of a thin cylindrical panel periodically forced by a transverse point load. We spatially discretize the shell using finite differences to produce a large system of ordinary differential equations (ODEs). By analogy with spectral non-linear Galerkin methods we split this large system into a 'slowly' contracting subsystem and a 'quickly' contracting subsystem. We then compare the accuracy and efficiency of (i) ignoring the dynamics of the 'quick' system (analogous to a traditional spectral Galerkin truncation and sometimes referred to as 'subspace dynamics' in the finite element community when applied to numerical eigenvectors), (ii) slaving the dynamics of the quick system to the slow system during numerical integration (analogous to a non-linear Galerkin method), and (iii) ignoring the influence of the dynamics of the quick system on the evolution of the slow system until we require some output, when we 'lift' the variables from the slow system to the quick using the same slaving rule as in (ii). This corresponds to the post-processing of Garcia-Archilla et al. We find that method (iii) produces essentially the same accuracy as method (ii) but requires only the computational power of method (i) and is thus more efficient than either. In contrast with spectral methods, this type of finite-difference technique can be applied to irregularly shaped domains. We feel that post-processing of this form is a valuable method that can be implemented in computational schemes for a wide variety of partial differential equations (PDEs) of practical importance.
Resumo:
A dynamical system can exhibit structure on multiple levels. Different system representations can capture different elements of a dynamical system's structure. We consider LTI input-output dynamical systems and present four representations of structure: complete computational structure, subsystem structure, signal structure, and input output sparsity structure. We then explore some of the mathematical relationships that relate these different representations of structure. In particular, we show that signal and subsystem structure are fundamentally different ways of representing system structure. A signal structure does not always specify a unique subsystem structure nor does subsystem structure always specify a unique signal structure. We illustrate these concepts with a numerical example. © 2011 AACC American Automatic Control Council.
Resumo:
This paper is concerned with the probability density function of the energy of a random dynamical system subjected to harmonic excitation. It is shown that if the natural frequencies and mode shapes of the system conform to the Gaussian Orthogonal Ensemble, then under common types of loading the distribution of the energy of the response is approximately lognormal, providing the modal overlap factor is high (typically greater than two). In contrast, it is shown that the response of a system with Poisson natural frequencies is not approximately lognormal. Numerical simulations are conducted on a plate system to validate the theoretical findings and good agreement is obtained. Simulations are also conducted on a system made from two plates connected with rotational springs to demonstrate that the theoretical findings can be extended to a built-up system. The work provides a theoretical justification of the commonly used empirical practice of assuming that the energy response of a random system is lognormal.
Resumo:
This paper studies the excitability properties of a generalized FitzHugh-Nagumo model. The model differs from the classical FitzHugh-Nagumo model in that it accounts for the effect of cooperative gating variables such as activation of calcium currents. Excitability is explored by unfolding a pitchfork bifurcation that is shown to organize five different types of excitability. In addition to the three classical types of neuronal excitability, two novel types are described and distinctly associated to the presence of cooperative variables. © 2012 Society for Industrial and Applied Mathematics.
Resumo:
Bistable dynamical switches are frequently encountered in mathematical modeling of biological systems because binary decisions are at the core of many cellular processes. Bistable switches present two stable steady-states, each of them corresponding to a distinct decision. In response to a transient signal, the system can flip back and forth between these two stable steady-states, switching between both decisions. Understanding which parameters and states affect this switch between stable states may shed light on the mechanisms underlying the decision-making process. Yet, answering such a question involves analyzing the global dynamical (i.e., transient) behavior of a nonlinear, possibly high dimensional model. In this paper, we show how a local analysis at a particular equilibrium point of bistable systems is highly relevant to understand the global properties of the switching system. The local analysis is performed at the saddle point, an often disregarded equilibrium point of bistable models but which is shown to be a key ruler of the decision-making process. Results are illustrated on three previously published models of biological switches: two models of apoptosis, the programmed cell death and one model of long-term potentiation, a phenomenon underlying synaptic plasticity. © 2012 Trotta et al.
Resumo:
We study the problem of finding a local minimum of a multilinear function E over the discrete set {0,1}n. The search is achieved by a gradient-like system in [0,1]n with cost function E. Under mild restrictions on the metric, the stable attractors of the gradient-like system are shown to produce solutions of the problem, even when they are not in the vicinity of the discrete set {0,1}n. Moreover, the gradient-like system connects with interior point methods for linear programming and with the analog neural network studied by Vidyasagar (IEEE Trans. Automat. Control 40 (8) (1995) 1359), in the same context. © 2004 Elsevier B.V. All rights reserved.