915 resultados para Dynamic Headspace Analysis
Resumo:
Many new viscoelastic materials have been developed recently to help improve noise and vibration levels in mechanical structures for applications in automobile and aeronautical industry. The viscoelastic layer treatment applied to solid metal structures modifies two main properties which are related to the mass distribution and the damping mechanism. The other property controlling the dynamics of a mechanical system is the stiffness that does not change much with the viscoelastic material. The model of such system is usually complex, because the viscoelastic material can exhibit nonlinear behavior, in contrast with the many available tools for linear dynamics. In this work, the dynamic behavior of sandwich beam is modeled by finite element method using different element types which are then compared with experimental results developed in the laboratory for various beams with different viscoelastic layer materials. The finite element model is them updated to help understand the effects in the damping for various natural frequencies and the trade-off between attenuation and the mass add to the structure.
Resumo:
Data visualization techniques are powerful in the handling and analysis of multivariate systems. One such technique known as parallel coordinates was used to support the diagnosis of an event, detected by a neural network-based monitoring system, in a boiler at a Brazilian Kraft pulp mill. Its attractiveness is the possibility of the visualization of several variables simultaneously. The diagnostic procedure was carried out step-by-step going through exploratory, explanatory, confirmatory, and communicative goals. This tool allowed the visualization of the boiler dynamics in an easier way, compared to commonly used univariate trend plots. In addition it facilitated analysis of other aspects, namely relationships among process variables, distinct modes of operation and discrepant data. The whole analysis revealed firstly that the period involving the detected event was associated with a transition between two distinct normal modes of operation, and secondly the presence of unusual changes in process variables at this time.
Resumo:
Programa de doctorado: Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería Instituto Universitario (SIANI)
Resumo:
[EN] 3D BEM-FEM coupling model is used to study the dynamic behavior of piled foundations in elastic layered soils in presenceof a rigid bedrock. Piles are modelled by FEM as beams according to the Bernoulli hpothesis, and every layer of the soil is modelled by BEM as a cointinuum, semi-infinite, isotropic, homogeneous, linear, viscoelastic medium.
Resumo:
[EN] Sediment materials play an important role on the dynamic response of large structures where fluid-soil-structure interaction is relevant and materials of that kind are present. Dam-reservoir systems and harbor structures are examples of civil engineering constructions where those effects are significant.
Resumo:
[EN] This paper shows a BEM-FEM coupling model for the time harmonic dynamic analysis of piles and pile groups embeddes in an elastic half-space. Piles are modelled using Finite Elements (FEM) as a beam according to the Bernoulli hypothesis, while the soil modelled using Boundary Elements (BEM) as a continuum, semi-infinite, isotropic, homogeneous or zoned homogeneous, linear, viscoelastic medium.
Resumo:
[EN]The effectiveness and accuracy of the superposition method in assessing the dynamic stiffness and damping functions of embedded footings supported by vertical piles in homogeneous viscoelastic soil is addressed. To the end, the impedances of piled embedded footings are compared to those obtained by suporposing the impedance functions of the corresponding pile groups and embedded footing treated separately.
Resumo:
[EN]A boundary element-finite element model is presented for the three-dimensional dynamic analysis of piled buildings in the frequency domain. Piles are modelled as compressible Euler-Bernoulli beams founded on a linear, isotropic, viscoelastic, zoned-homogeneous, unbounded layered soil, while multi-storey buildings are assumed to be comprised of vertical compressible piers and rigid slabs.
Resumo:
[EN]This work presents a time-harmonic boundary elementfinite element three-dimensional model for the dynamic analysis of building structures founded on elastic or porelastic soils. The building foundation and soil domains are modelled as homogeneous, isotropic, elastic or poroelastic media using boundary elements.
Resumo:
The research is aimed at contributing to the identification of reliable fully predictive Computational Fluid Dynamics (CFD) methods for the numerical simulation of equipment typically adopted in the chemical and process industries. The apparatuses selected for the investigation, specifically membrane modules, stirred vessels and fluidized beds, were characterized by a different and often complex fluid dynamic behaviour and in some cases the momentum transfer phenomena were coupled with mass transfer or multiphase interactions. Firs of all, a novel modelling approach based on CFD for the prediction of the gas separation process in membrane modules for hydrogen purification is developed. The reliability of the gas velocity field calculated numerically is assessed by comparison of the predictions with experimental velocity data collected by Particle Image Velocimetry, while the applicability of the model to properly predict the separation process under a wide range of operating conditions is assessed through a strict comparison with permeation experimental data. Then, the effect of numerical issues on the RANS-based predictions of single phase stirred tanks is analysed. The homogenisation process of a scalar tracer is also investigated and simulation results are compared to original passive tracer homogenisation curves determined with Planar Laser Induced Fluorescence. The capability of a CFD approach based on the solution of RANS equations is also investigated for describing the fluid dynamic characteristics of the dispersion of organics in water. Finally, an Eulerian-Eulerian fluid-dynamic model is used to simulate mono-disperse suspensions of Geldart A Group particles fluidized by a Newtonian incompressible fluid as well as binary segregating fluidized beds of particles differing in size and density. The results obtained under a number of different operating conditions are compared with literature experimental data and the effect of numerical uncertainties on axial segregation is also discussed.
Resumo:
The general aim of this work is to contribute to the energy performance assessment of ventilated façades by the simultaneous use of experimental data and numerical simulations. A significant amount of experimental work was done on different types of ventilated façades with natural ventilation. The measurements were taken on a test building. The external walls of this tower are rainscreen ventilated façades. Ventilation grills are located at the top and at the bottom of the tower. In this work the modelling of the test building using a dynamic thermal simulation program (ESP-r) is presented and the main results discussed. In order to investigate the best summer thermal performance of rainscreen ventilated skin façade a study for different setups of rainscreen walls was made. In particular, influences of ventilation grills, air cavity thickness, skin colour, skin material, orientation of façade were investigated. It is shown that some types of rainscreen ventilated façade typologies are capable of lowering the cooling energy demand of a few percent points.
Resumo:
In numerosi campi scientici l'analisi di network complessi ha portato molte recenti scoperte: in questa tesi abbiamo sperimentato questo approccio sul linguaggio umano, in particolare quello scritto, dove le parole non interagiscono in modo casuale. Abbiamo quindi inizialmente presentato misure capaci di estrapolare importanti strutture topologiche dai newtork linguistici(Degree, Strength, Entropia, . . .) ed esaminato il software usato per rappresentare e visualizzare i grafi (Gephi). In seguito abbiamo analizzato le differenti proprietà statistiche di uno stesso testo in varie sue forme (shuffolato, senza stopwords e senza parole con bassa frequenza): il nostro database contiene cinque libri di cinque autori vissuti nel XIX secolo. Abbiamo infine mostrato come certe misure siano importanti per distinguere un testo reale dalle sue versioni modificate e perché la distribuzione del Degree di un testo normale e di uno shuffolato abbiano lo stesso andamento. Questi risultati potranno essere utili nella sempre più attiva analisi di fenomeni linguistici come l'autorship attribution e il riconoscimento di testi shuffolati.
Resumo:
Aim of this research is the development and validation of a comprehensive multibody motorcycle model featuring rigid-ring tires, taking into account both slope and roughness of road surfaces. A novel parametrization for the general kinematics of the motorcycle is proposed, using a mixed reference-point and relative-coordinates approach. The resulting description, developed in terms of dependent coordinates, makes it possible to efficiently include rigid-ring kinematics as well as road elevation and slope. The equations of motion for the multibody system are derived symbolically and the constraint equations arising from the dependent-coordinate formulation are handled using a projection technique. Therefore the resulting system of equations can be integrated in time domain using a standard ODE algorithm. The model is validated with respect to maneuvers experimentally measured on the race track, showing consistent results and excellent computational efficiency. More in detail, it is also capable of reproducing the chatter vibration of racing motorcycles. The chatter phenomenon, appearing during high speed cornering maneuvers, consists of a self-excited vertical oscillation of both the front and rear unsprung masses in the range of frequency between 17 and 22 Hz. A critical maneuver is numerically simulated, and a self-excited vibration appears, consistent with the experimentally measured chatter vibration. Finally, the driving mechanism for the self-excitation is highlighted and a physical interpretation is proposed.