872 resultados para Dynamic Emission Models
Resumo:
In this paper, we propose a new design configuration for a carbon nanotube (CNT) array based pulsed field emission device to stabilize the field emission current. In the new design, we consider a pointed height distribution of the carbon nanotube array under a diode configuration with two side gates maintained at a negative potential to obtain a highly intense beam of electrons localized at the center of the array. The randomly oriented CNTs are assumed to be grown on a metallic substrate in the form of a thin film. A model of field emission from an array of CNTs under diode configuration was proposed and validated by experiments. Despite high output, the current in such a thin film device often decays drastically. The present paper is focused on understanding this problem. The random orientation of the CNTs and the electromechanical interaction are modeled to explain the self-assembly. The degraded state of the CNTs and the electromechanical force are employed to update the orientation of the CNTs. Pulsed field emission current at the device scale is finally obtained by using the Fowler-Nordheim equation by considering a dynamic electric field across the cathode and the anode and integration of current densities over the computational cell surfaces on the anode side. Furthermore we compare the subsequent performance of the pointed array with the conventionally used random and uniform arrays and show that the proposed design outperforms the conventional designs by several orders of magnitude. Based on the developed model, numerical simulations aimed at understanding the effects of various geometric parameters and their statistical features on the device current history are reported.
Resumo:
With extensive use of dynamic voltage scaling (DVS) there is increasing need for voltage scalable models. Similarly, leakage being very sensitive to temperature motivates the need for a temperature scalable model as well. We characterize standard cell libraries for statistical leakage analysis based on models for transistor stacks. Modeling stacks has the advantage of using a single model across many gates there by reducing the number of models that need to be characterized. Our experiments on 15 different gates show that we needed only 23 models to predict the leakage across 126 input vector combinations. We investigate the use of neural networks for the combined PVT model, for the stacks, which can capture the effect of inter die, intra gate variations, supply voltage(0.6-1.2 V) and temperature (0 - 100degC) on leakage. Results show that neural network based stack models can predict the PDF of leakage current across supply voltage and temperature accurately with the average error in mean being less than 2% and that in standard deviation being less than 5% across a range of voltage, temperature.
Resumo:
This paper describes some of the physical and numerical model tests of reinforced soil retaining walls subjected to dynamic excitation through uni-axial shaking tests. Models of retaining walls are constructed in a perspex box with geotextile reinforcement using the wrap around technique with dry sand backfill and instrumented with displacement sensors, accelerometers and soil pressure sensors. Numerical modelling of these shaking table tests is carried using FLAC. Numerical model is validated by comparing physical model results. Responses of wrap faced walls with different number of reinforcement layers are discussed from both the physical and numerical model tests. Results showed that the displacements are decreasing with the increase in number of reinforcement layers while acceleration amplifications are not affected significantly.
Resumo:
The soft switching converters evolved through the resonant load, resonant switch, resonant transition and active clamp converters to eliminate switching losses in power converters. This paper briefly presents the operating principle of the new family of soft transition converters; the methodology of design of these converters is presented through an example. In the proposed family of converters, the switching transitions of both the main switch and auxiliary switch are lossless.When these converters are analysed in terms of the pole current and throw voltage, the defining equations of all converters belonging to this family become identical.Such a description allows one to define simple circuit oriented model for these converters. These circuit models help in evaluating the steady state and dynamic model of these converters. The standard dynamic performance functions of the converters are readily obtainable from this model. This paper presents these dynamic models and verifies the same through measurements on a prototype converter.
Resumo:
The soft switching converters evolved through the resonant load, resonant switch, resonant transition and active clamp converters to eliminate switching losses in power converters. This paper briefly presents the operating principle of the new family of soft transition converters; the methodology of design of these converters is presented through an example. In the proposed family of converters, the switching transitions of both the main switch and auxiliary switch are lossless. When these converters are analysed in terms of the pole current and throw voltage, the defining equations of all converters belonging to this family become identical.Such a description allows one to define simple circuit oriented model for these converters. These circuit models help in evaluating the steady state and dynamic model of these converters. The standard dynamic performance functions of the converters are readily obtainable from this model. This paper presents these dynamic models and verifies the same through measurements on a prototype converter.
Resumo:
In this paper, we investigate the use of reinforcement learning (RL) techniques to the problem of determining dynamic prices in an electronic retail market. As representative models, we consider a single seller market and a two seller market, and formulate the dynamic pricing problem in a setting that easily generalizes to markets with more than two sellers. We first formulate the single seller dynamic pricing problem in the RL framework and solve the problem using the Q-learning algorithm through simulation. Next we model the two seller dynamic pricing problem as a Markovian game and formulate the problem in the RL framework. We solve this problem using actor-critic algorithms through simulation. We believe our approach to solving these problems is a promising way of setting dynamic prices in multi-agent environments. We illustrate the methodology with two illustrative examples of typical retail markets.
Resumo:
This article presents a review of recent developments in parametric based acoustic emission (AE) techniques applied to concrete structures. It recapitulates the significant milestones achieved by previous researchers including various methods and models developed in AE testing of concrete structures. The aim is to provide an overview of the specific features of parametric based AE techniques of concrete structures carried out over the years. Emphasis is given to traditional parameter-based AE techniques applied to concrete structures. A significant amount of research on AE techniques applied to concrete structures has already been published and considerable attention has been given to those publications. Some recent studies such as AE energy analysis and b-value analysis used to assess damage of concrete bridge beams have also been discussed. The formation of fracture process zone and the AE energy released during the fracture process in concrete beam specimens have been summarised. A large body of experimental data on AE characteristics of concrete has accumulated over the last three decades. This review of parametric based AE techniques applied to concrete structures may be helpful to the concerned researchers and engineers to better understand the failure mechanism of concrete and evolve more useful methods and approaches for diagnostic inspection of structural elements and failure prediction/prevention of concrete structures.
Resumo:
Experimental conditions or the presence of interacting components can lead to variations in the structural models of macromolecules. However, the role of these factors in conformational selection is often omitted by in silico methods to extract dynamic information from protein structural models. Structures of small peptides, considered building blocks for larger macromolecular structural models, can substantially differ in the context of a larger protein. This limitation is more evident in the case of modeling large multi-subunit macromolecular complexes using structures of the individual protein components. Here we report an analysis of variations in structural models of proteins with high sequence similarity. These models were analyzed for sequence features of the protein, the role of scaffolding segments including interacting proteins or affinity tags and the chemical components in the experimental conditions. Conformational features in these structural models could be rationalized by conformational selection events, perhaps induced by experimental conditions. This analysis was performed on a non-redundant dataset of protein structures from different SCOP classes. The sequence-conformation correlations that we note here suggest additional features that could be incorporated by in silico methods to extract dynamic information from protein structural models.
Resumo:
Effects of dynamic contact angle models on the flow dynamics of an impinging droplet in sharp interface simulations are presented in this article. In the considered finite element scheme, the free surface is tracked using the arbitrary Lagrangian-Eulerian approach. The contact angle is incorporated into the model by replacing the curvature with the Laplace-Beltrami operator and integration by parts. Further, the Navier-slip with friction boundary condition is used to avoid stress singularities at the contact line. Our study demonstrates that the contact angle models have almost no influence on the flow dynamics of the non-wetting droplets. In computations of the wetting and partially wetting droplets, different contact angle models induce different flow dynamics, especially during recoiling. It is shown that a large value for the slip number has to be used in computations of the wetting and partially wetting droplets in order to reduce the effects of the contact angle models. Among all models, the equilibrium model is simple and easy to implement. Further, the equilibrium model also incorporates the contact angle hysteresis. Thus, the equilibrium contact angle model is preferred in sharp interface numerical schemes.
Resumo:
This paper describes the development of a numerical model for simulating the shaking table tests on wrap-faced reinforced soil retaining walls. Some of the physical model tests carried out on reinforced soil retaining walls subjected to dynamic excitation through uniaxial shaking tests are briefly discussed. Models of retaining walls are constructed in a perspex box with geotextile reinforcement using the wraparound technique with dry sand backfill and instrumented with displacement sensors, accelerometers, and soil pressure sensors. Results showed that the displacements decrease with the increase in number of reinforcement layers, whereas acceleration amplifications were not affected significantly. Numerical modeling of these shaking table tests is carried out using the Fast Lagrangian Analysis of Continua program. The numerical model is validated by comparing the results with experiments on physical models. Responses of wrap-faced walls with varying numbers of reinforcement layers are compared. Sensitivity analysis performed on the numerical models showed that the friction and dilation angle of backfill material and stiffness properties of the geotextile-soil interface are the most affecting parameters for the model response.
Resumo:
We study the problem of analyzing influence of various factors affecting individual messages posted in social media. The problem is challenging because of various types of influences propagating through the social media network that act simultaneously on any user. Additionally, the topic composition of the influencing factors and the susceptibility of users to these influences evolve over time. This problem has not been studied before, and off-the-shelf models are unsuitable for this purpose. To capture the complex interplay of these various factors, we propose a new non-parametric model called the Dynamic Multi-Relational Chinese Restaurant Process. This accounts for the user network for data generation and also allows the parameters to evolve over time. Designing inference algorithms for this model suited for large scale social-media data is another challenge. To this end, we propose a scalable and multi-threaded inference algorithm based on online Gibbs Sampling. Extensive evaluations on large-scale Twitter and Face book data show that the extracted topics when applied to authorship and commenting prediction outperform state-of-the-art baselines. More importantly, our model produces valuable insights on topic trends and user personality trends beyond the capability of existing approaches.
Resumo:
Impoverishment of particles, i.e. the discretely simulated sample paths of the process dynamics, poses a major obstacle in employing the particle filters for large dimensional nonlinear system identification. A known route of alleviating this impoverishment, i.e. of using an exponentially increasing ensemble size vis-a-vis the system dimension, remains computationally infeasible in most cases of practical importance. In this work, we explore the possibility of unscented transformation on Gaussian random variables, as incorporated within a scaled Gaussian sum stochastic filter, as a means of applying the nonlinear stochastic filtering theory to higher dimensional structural system identification problems. As an additional strategy to reconcile the evolving process dynamics with the observation history, the proposed filtering scheme also modifies the process model via the incorporation of gain-weighted innovation terms. The reported numerical work on the identification of structural dynamic models of dimension up to 100 is indicative of the potential of the proposed filter in realizing the stated aim of successfully treating relatively larger dimensional filtering problems. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Since Brutsaert and Neiber (1977), recession curves are widely used to analyse subsurface systems of river basins by expressing -dQ/dt as a function of Q, which typically take a power law form: -dQ/dt=kQ, where Q is the discharge at a basin outlet at time t. Traditionally recession flows are modelled by single reservoir models that assume a unique relationship between -dQ/dt and Q for a basin. However, recent observations indicate that -dQ/dt-Q relationship of a basin varies greatly across recession events, indicating the limitation of such models. In this study, the dynamic relationship between -dQ/dt and Q of a basin is investigated through the geomorphological recession flow model which models recession flows by considering the temporal evolution of its active drainage network (the part of the stream network of the basin draining water at time t). Two primary factors responsible for the dynamic relationship are identified: (i) degree of aquifer recharge (ii) spatial variation of rainfall. Degree of aquifer recharge, which is likely to be controlled by (effective) rainfall patterns, influences the power law coefficient, k. It is found that k has correlation with past average streamflow, which confirms the notion that dynamic -dQ/dt-Q relationship is caused by the degree of aquifer recharge. Spatial variation of rainfall is found to have control on both the exponent, , and the power law coefficient, k. It is noticed that that even with same and k, recession curves can be different, possibly due to their different (recession) peak values. This may also happen due to spatial variation of rainfall. Copyright (c) 2012 John Wiley & Sons, Ltd.
Resumo:
The static and dynamic pressure concentration isotherms (PCIs) of MmNi(5-x)Al(x). (x = 0, 0.3, 0.5 and 0.8) hydrides were measured at different temperatures using volumetric method. The effect of Al substitution on PCI and thermodynamic properties were studied. The plateau pressure and maximum hydrogen storage capacity decreased with Al content whereas reaction enthalpy increased. The plateau pressure, plateau slope and hysteresis effect was observed more for dynamic PCIs compared to static PCIs. Different mathematical models used for metal hydride-based thermodynamic devices simulation are compared to select suitable model for static and dynamic PCI simulation of MmNi(5)-based hydrides. Few important physical coefficients (partial molar volume, reaction enthalpy, reaction entropy, etc.) useful for development of thermodynamic devices were estimated. A relation has been proposed to correlate aluminium content and physical coefficients for the prediction of unknown PCI. The simulated and experimental PCIs were found matching closely for both static and dynamic conditions. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Resumo:
Understanding the growth behavior of microorganisms using modeling and optimization techniques is an active area of research in the fields of biochemical engineering and systems biology. In this paper, we propose a general modeling framework, based on Monad model, to model the growth of microorganisms. Utilizing the general framework, we formulate an optimal control problem with the objective of maximizing a long-term cellular goal and solve it analytically under various constraints for the growth of microorganisms in a two substrate batch environment. We investigate the relation between long term and short term cellular goals and show that the objective of maximizing cellular concentration at a fixed final time is equivalent to maximization of instantaneous growth rate. We then establish the mathematical connection between the generalized framework and optimal and cybernetic modeling frameworks and derive generalized governing dynamic equations for optimal and cybernetic models. We finally illustrate the influence of various constraints in the cybernetic modeling framework on the optimal growth behavior of microorganisms by solving several dynamic optimization problems using genetic algorithms. (C) 2014 Published by Elsevier Inc.