993 resultados para Dynamic Electricity Tariffs
Resumo:
An electricity demand reduction project based on comprehensive residential consumer engagement was established within an Australian community in 2008. By 2011, both the peak demand and grid supplied electricity consumption had decreased to below pre-intervention levels. This case study research explored the relationship developed between the utility, community and individual consumer from the residential customer perspective through qualitative research of 22 residential households. It is proposed that an energy utility can be highly successful at peak demand reduction by becoming a community member and a peer to residential consumers and developing the necessary trust, access, influence and partnership required to create the responsive environment to change. A peer-community approach could provide policymakers with a pathway for implementing pro-environmental behaviour for low carbon communities, as well as peak demand reduction, thereby addressing government emission targets while limiting the cost of living increases from infrastructure expenditure.
Resumo:
This paper describes and analyzes research on the dynamics of long-term care and the policy relevance of identifying the sources of persistence in caregiving arrangements (including the effect of dynamics on parameter estimates, implications for family welfare, parent welfare, child welfare, and cost of government programs). We discuss sources and causes of observed persistence in caregiving arrangements including inertia/state dependence (confounded by unobserved heterogeneity) and costs of changing caregivers. We comment on causes of dynamics including learning/human capital accumulation; burnout; and game-playing. We suggest how to deal with endogenous geography; dynamics in discrete and continuous choices; and equilibrium issues (multiple equilibria, dynamic equilibria). We also present an overview of commonly used longitudinal data sets and evaluate their relative advantages/disadvantages. We also discuss other data issues related to noisy measures of wealth and family structure. Finally, we suggest some methods to handle econometric problems such as endogeneous geography. © 2014 Springer Science+Business Media New York.
Resumo:
This paper considers two problems that frequently arise in dynamic discrete choice problems but have not received much attention with regard to simulation methods. The first problem is how to simulate unbiased simulators of probabilities conditional on past history. The second is simulating a discrete transition probability model when the underlying dependent variable is really continuous. Both methods work well relative to reasonable alternatives in the application discussed. However, in both cases, for this application, simpler methods also provide reasonably good results.
Resumo:
This paper examines the properties of various approximation methods for solving stochastic dynamic programs in structural estimation problems. The problem addressed is evaluating the expected value of the maximum of available choices. The paper shows that approximating this by the maximum of expected values frequently has poor properties. It also shows that choosing a convenient distributional assumptions for the errors and then solving exactly conditional on the distributional assumption leads to small approximation errors even if the distribution is misspecified. © 1997 Cambridge University Press.
Resumo:
To harness safe operation of Web-based systems in Web environments, we propose an SSPA (Server-based SHA-1 Page-digest Algorithm) to verify the integrity of Web contents before the server issues an HTTP response to a user request. In addition to standard security measures, our Java implementation of the SSPA, which is called the Dynamic Security Surveillance Agent (DSSA), provides further security in terms of content integrity to Web-based systems. Its function is to prevent the display of Web contents that have been altered through the malicious acts of attackers and intruders on client machines. This is to protect the reputation of organisations from cyber-attacks and to ensure the safe operation of Web systems by dynamically monitoring the integrity of a Web site's content on demand. We discuss our findings in terms of the applicability and practicality of the proposed system. We also discuss its time metrics, specifically in relation to its computational overhead at the Web server, as well as the overall latency from the clients' point of view, using different Internet access methods. The SSPA, our DSSA implementation, some experimental results and related work are all discussed
Resumo:
A dynamic accumulator is an algorithm, which merges a large set of elements into a constant-size value such that for an element accumulated, there is a witness confirming that the element was included into the value, with a property that accumulated elements can be dynamically added and deleted into/from the original set. Recently Wang et al. presented a dynamic accumulator for batch updates at ICICS 2007. However, their construction suffers from two serious problems. We analyze them and propose a way to repair their scheme. We use the accumulator to construct a new scheme for common secure indices with conjunctive keyword-based retrieval.
Resumo:
An overview of dynamic self-organization phenomena in complex ionized gas systems, associated physical phenomena, and industrial applications is presented. The most recent experimental, theoretical, and modeling efforts to understand the growth mechanisms and dynamics of nano- and micron-sized particles, as well as the unique properties of the plasma-particle systems (colloidal, or complex plasmas) and the associated physical phenomena are reviewed and the major technological applications of micro- and nanoparticles are discussed. Until recently, such particles were considered mostly as a potential hazard for the microelectronic manufacturing and significant efforts were applied to remove them from the processing volume or suppress the gas-phase coagulation. Nowadays, fine clusters and particulates find numerous challenging applications in fundamental science as well as in nanotechnology and other leading high-tech industries.
Resumo:
We consider the following problem: a user stores encrypted documents on an untrusted server, and wishes to retrieve all documents containing some keywords without any loss of data confidentiality. Conjunctive keyword searches on encrypted data have been studied by numerous researchers over the past few years, and all existing schemes use keyword fields as compulsory information. This however is impractical for many applications. In this paper, we propose a scheme of keyword field-free conjunctive keyword searches on encrypted data, which affirmatively answers an open problem asked by Golle et al. at ACNS 2004. Furthermore, the proposed scheme is extended to the dynamic group setting. Security analysis of our constructions is given in the paper.
Resumo:
In this paper we demonstrate that existing cooperative spectrum sensing formulated for static primary users cannot accurately detect dynamic primary users regardless of the information fusion method. Performance error occurs as the sensing parameters calculated by the conventional detector result in sensing performance that violates the sensing requirements. Furthermore, the error is accumulated and compounded by the number of cooperating nodes. To address this limitation, we design and implement the duty cycle detection model for the context of cooperative spectrum sensing to accurately calculate the sensing parameters that satisfy the sensing requirements. We show that longer sensing duration is required to compensate for dynamic primary user traffic.
Resumo:
A novel gray-box neural network model (GBNNM), including multi-layer perception (MLP) neural network (NN) and integrators, is proposed for a model identification and fault estimation (MIFE) scheme. With the GBNNM, both the nonlinearity and dynamics of a class of nonlinear dynamic systems can be approximated. Unlike previous NN-based model identification methods, the GBNNM directly inherits system dynamics and separately models system nonlinearities. This model corresponds well with the object system and is easy to build. The GBNNM is embedded online as a normal model reference to obtain the quantitative residual between the object system output and the GBNNM output. This residual can accurately indicate the fault offset value, so it is suitable for differing fault severities. To further estimate the fault parameters (FPs), an improved extended state observer (ESO) using the same NNs (IESONN) from the GBNNM is proposed to avoid requiring the knowledge of ESO nonlinearity. Then, the proposed MIFE scheme is applied for reaction wheels (RW) in a satellite attitude control system (SACS). The scheme using the GBNNM is compared with other NNs in the same fault scenario, and several partial loss of effect (LOE) faults with different severities are considered to validate the effectiveness of the FP estimation and its superiority.
Resumo:
This thesis introduces advanced Demand Response algorithms for residential appliances to provide benefits for both utility and customers. The algorithms are engaged in scheduling appliances appropriately in a critical peak day to alleviate network peak, adverse voltage conditions and wholesale price spikes also reducing the cost of residential energy consumption. Initially, a demand response technique via customer reward is proposed, where the utility controls appliances to achieve network improvement. Then, an improved real-time pricing scheme is introduced and customers are supported by energy management schedulers to actively participate in it. Finally, the demand response algorithm is improved to provide frequency regulation services.
Resumo:
This paper critically examines research on consumer attitudes and behavior towards solar photovoltaic (PV) and renewable energy technology in Australia. The uptake of renewable energy technology by residential consumers in Australia in the past decade has transformed the electricity supply and demand paradigm. Thus, this paper reviews Australian research on consumer behavior, understanding and choices in order to identify gaps in knowledge. As the role of the consumer transforms there is a critical need to understand the ways consumers may respond to future energy policies to mitigate unforeseen negative social and economic consequence of programs designed to achieve positive environmental outcomes.
Resumo:
There is substantial evidence for facial emotion recognition (FER) deficits in autism spectrum disorder (ASD). The extent of this impairment, however, remains unclear, and there is some suggestion that clinical groups might benefit from the use of dynamic rather than static images. High-functioning individuals with ASD (n = 36) and typically developing controls (n = 36) completed a computerised FER task involving static and dynamic expressions of the six basic emotions. The ASD group showed poorer overall performance in identifying anger and disgust and were disadvantaged by dynamic (relative to static) stimuli when presented with sad expressions. Among both groups, however, dynamic stimuli appeared to improve recognition of anger. This research provides further evidence of specific impairment in the recognition of negative emotions in ASD, but argues against any broad advantages associated with the use of dynamic displays.