876 resultados para Dynamic Data eXchange
Resumo:
The breakdown of the Bretton Woods system and the adoption of generalized oating exchange rates ushered in a new era of exchange rate volatility and uncer- tainty. This increased volatility lead economists to search for economic models able to describe observed exchange rate behavior. In the present paper we propose more general STAR transition functions which encompass both threshold nonlinearity and asymmetric e¤ects. Our framework allows for a gradual adjustment from one regime to another, and considers threshold e¤ects by encompassing other existing models, such as TAR models. We apply our methodology to three di¤erent exchange rate data-sets, one for developing countries, and o¢ cial nominal exchange rates, the sec- ond emerging market economies using black market exchange rates and the third for OECD economies.
Resumo:
This paper assesses the impact of official central bank interventions (CBIs) on exchange rate returns, their volatility and bilateral correlations. By exploiting the recent publication of intervention data by the Bank of England, this study is able to investigate fficial interventions by a total number of four central banks, while the previous studies have been limited to three (the Federal Reserve, Bundesbank and Bank of Japan). The results of the existing literature are reappraised and refined. In particular, unilateral CBI is found to be more successful than coordinated CBI. The likely implications of these findings are then discussed.
Resumo:
This paper proposes a bootstrap artificial neural network based panel unit root test in a dynamic heterogeneous panel context. An application to a panel of bilateral real exchange rate series with the US Dollar from the 20 major OECD countries is provided to investigate the Purchase Power Parity (PPP). The combination of neural network and bootstrapping significantly changes the findings of the economic study in favour of PPP.
Resumo:
The large appreciation and depreciation of the US dollar in the 1980s stimulated an important debate on the usefulness of unit root tests in the presence of structural breaks. In this paper, we propose a simple model to describe the evolution of the real exchange rate. We then propose a more general smooth transition (STR) function than has hitherto been employed, which is able to capture structural changes along the (long-run) equilibrium path, and show that this is consistent with our economic model. Our framework allows for a gradual adjustment between regimes and allows for under- and/or over-valued exchange rate adjustments. Using monthly and quarterly data for up to twenty OECD countries, we apply our methodology to investigate the univariate time series properties of CPI-based real exchange rates with both the U.S. dollar and German mark as the numeraire currencies. The empirical results show that, for more than half of the quarterly series, the evidence in favour of the stationarity of the real exchange rate was clearer in the sub-sample period post-1980.
Resumo:
This study examines the impact of globalization on cross-country inequality and poverty using a panel data set for 65 developing counties, over the period 1970-2008. With separate modelling for poverty and inequality, explicit control for financial intermediation, and comparative analysis for developing countries, the study attempts to provide a deeper understanding of cross country variations in income inequality and poverty. The major findings of the study are five fold. First, a non-monotonic relationship between income distribution and the level of economic development holds in all samples of countries. Second, both openness to trade and FDI do not have a favourable effect on income distribution in developing countries. Third, high financial liberalization exerts a negative and significant influence on income distribution in developing countries. Fourth, inflation seems to distort income distribution in all sets of countries. Finally, the government emerges as a major player in impacting income distribution in developing countries.
Resumo:
While flexible exchange rates facilitate stabilisation, exchange rate fluctuations can cause real volatility. This gives policy importance to the causal relationship between exchange rate depreciation and its volatility. An exchange rate may be expected to become more volatile when the underlying currency loses value. We conjecture that a reverse causation, which further weakens the currency, may be mitigated by price stability. Data from Ghana, Mozambique and Tanzania support this: depreciation makes exchange rate more volatile for all but volatility does not causes depreciation in Tanzania which has enjoyed a more stable inflation despite all countries adopting similar macro-policies since early 1990s.
Resumo:
This paper examines both the in-sample and out-of-sample performance of three monetary fundamental models of exchange rates and compares their out-of-sample performance to that of a simple Random Walk model. Using a data-set consisting of five currencies at monthly frequency over the period January 1980 to December 2009 and a battery of newly developed performance measures, the paper shows that monetary models do better (in-sample and out-of-sample forecasting) than a simple Random Walk model.
Resumo:
This paper investigates dynamic completeness of financial markets in which the underlying risk process is a multi-dimensional Brownian motion and the risky securities dividends geometric Brownian motions. A sufficient condition, that the instantaneous dispersion matrix of the relative dividends is non-degenerate, was established recently in the literature for single-commodity, pure-exchange economies with many heterogenous agents, under the assumption that the intermediate flows of all dividends, utilities, and endowments are analytic functions. For the current setting, a different mathematical argument in which analyticity is not needed shows that a slightly weaker condition suffices for general pricing kernels. That is, dynamic completeness obtains irrespectively of preferences, endowments, and other structural elements (such as whether or not the budget constraints include only pure exchange, whether or not the time horizon is finite with lump-sum dividends available on the terminal date, etc.)
Resumo:
The framework presents how trading in the foreign commodity futures market and the forward exchange market can affect the optimal spot positions of domestic commodity producers and traders. It generalizes the models of Kawai and Zilcha (1986) and Kofman and Viaene (1991) to allow both intermediate and final commodities to be traded in the international and futures markets, and the exporters/importers to face production shock, domestic factor costs and a random price. Applying mean-variance expected utility, we find that a rise in the expected exchange rate can raise both supply and demand for commodities and reduce domestic prices if the exchange rate elasticity of supply is greater than that of demand. Whether higher volatilities of exchange rate and foreign futures price can reduce the optimal spot position of domestic traders depends on the correlation between the exchange rate and the foreign futures price. Even though the forward exchange market is unbiased, and there is no correlation between commodity prices and exchange rates, the exchange rate can still affect domestic trading and prices through offshore hedging and international trade if the traders are interested in their profit in domestic currency. It illustrates how the world prices and foreign futures prices of commodities and their volatility can be transmitted to the domestic market as well as the dynamic relationship between intermediate and final goods prices. The equilibrium prices depends on trader behaviour i.e. who trades or does not trade in the foreign commodity futures and domestic forward currency markets. The empirical result applying a two-stage-least-squares approach to Thai rice and rubber prices supports the theoretical result.
Resumo:
Consider a model with parameter phi, and an auxiliary model with parameter theta. Let phi be a randomly sampled from a given density over the known parameter space. Monte Carlo methods can be used to draw simulated data and compute the corresponding estimate of theta, say theta_tilde. A large set of tuples (phi, theta_tilde) can be generated in this manner. Nonparametric methods may be use to fit the function E(phi|theta_tilde=a), using these tuples. It is proposed to estimate phi using the fitted E(phi|theta_tilde=theta_hat), where theta_hat is the auxiliary estimate, using the real sample data. This is a consistent and asymptotically normally distributed estimator, under certain assumptions. Monte Carlo results for dynamic panel data and vector autoregressions show that this estimator can have very attractive small sample properties. Confidence intervals can be constructed using the quantiles of the phi for which theta_tilde is close to theta_hat. Such confidence intervals are found to have very accurate coverage.
Resumo:
We demonstrate that the step of DNA strand exchange during RecA-mediated recombination reaction can occur equally efficiently in the presence or absence of ATP hydrolysis. The polarity of strand exchange is the same when instead of ATP its non-hydrolyzable analog adenosine-5'-O-(3-thiotriphosphate) is used. We show that the ATP dependence of recombination reaction is limited to the post-exchange stages of the reactions. The low DNA affinity state of RecA protomers, induced after ATP hydrolysis, is necessary for the dissociation of RecA-DNA complexes at the end of the reaction. This dissociation of RecA from DNA is necessary for the release of recombinant DNA molecules from the complexes formed with RecA and for the recycling of RecA protomers for another round of the recombination reaction.
Resumo:
The sensitivity of altitudinal and latitudinal tree-line ecotones to climate change, particularly that of temperature, has received much attention. To improve our understanding of the factors affecting tree-line position, we used the spatially explicit dynamic forest model TreeMig. Although well-suited because of its landscape dynamics functions, TreeMig features a parabolic temperature growth response curve, which has recently been questioned. and the species parameters are not specifically calibrated for cold temperatures. Our main goals were to improve the theoretical basis of the temperature growth response curve in the model and develop a method for deriving that curve's parameters from tree-ring data. We replaced the parabola with an asymptotic curve, calibrated for the main species at the subalpine (Swiss Alps: Pinus cembra, Larix decidua, Picea abies) and boreal (Fennoscandia: Pinus sylvestris, Betula pubescens, P. abies) tree-lines. After fitting new parameters, the growth curve matched observed tree-ring widths better. For the subalpine species, the minimum degree-day sum allowing, growth (kDDMin) was lowered by around 100 degree-days; in the case of Larix, the maximum potential ring-width was increased to 5.19 mm. At the boreal tree-line, the kDDMin for P. sylvestris was lowered by 210 degree-days and its maximum ring-width increased to 2.943 mm; for Betula (new in the model) kDDMin was set to 325 degree-days and the maximum ring-width to 2.51 mm; the values from the only boreal sample site for Picea were similar to the subalpine ones, so the same parameters were used. However, adjusting the growth response alone did not improve the model's output concerning species' distributions and their relative importance at tree-line. Minimum winter temperature (MinWiT, mean of the coldest winter month), which controls seedling establishment in TreeMig, proved more important for determining distribution. Picea, P. sylvestris and Betula did not previously have minimum winter temperature limits, so these values were set to the 95th percentile of each species' coldest MinWiT site (respectively -7, -11, -13). In a case study for the Alps, the original and newly calibrated versions of TreeMig were compared with biomass data from the National Forest Inventor), (NFI). Both models gave similar, reasonably realistic results. In conclusion, this method of deriving temperature responses from tree-rings works well. However, regeneration and its underlying factors seem more important for controlling species' distributions than previously thought. More research on regeneration ecology, especially at the upper limit of forests. is needed to improve predictions of tree-line responses to climate change further.
Resumo:
This study compared adherence (persistence and execution) during pregnancy and postpartum in HIV-positive women having taken part in the adherence-enhancing program of the Community Pharmacy of the Department of Ambulatory Care and Community Medicine in Lausanne between 2004 and 2012. This interdisciplinary program combined electronic drug monitoring and semi-structured, repeated motivational interviews. This was a retrospective, observational study. Observation period spread over from first adherence visit after last menstruation until 6 months after childbirth. Medication-taking was recorded by electronic drug monitoring. Socio-demographic and delivery data were collected from Swiss HIV Cohort database. Adherence data, barriers and facilitators were collected from pharmacy database. Electronic data were reconciled with pill-count and interview notes in order to include reported pocket-doses. Execution was analyzed over 3-day periods by a mixed effect logistic model, separating time before and after childbirth. This model allowed us to estimate different time slopes for both periods and to show a sudden fall associated with childbirth. Twenty-five pregnant women were included. Median age was 29 (IQR: 26.5, 32.0), women were in majority black (n_17,68%) and took a cART combining protease and nucleoside reverse transcriptase inhibitors (n_24,96%). Eleven women (44%) were ART-naı¨ve at the beginning of pregnancy. Twenty women (80%) were included in the program because of pregnancy. Women were included at all stages of pregnancy. Six women (24%) stopped the program during pregnancy, 3 (12%) at delivery, 4 (16%) during postpartum and 12 (48%) stayed in program at the end of observation time. Median number of visits was 4 (3.0, 6.3) during pregnancy and 3 (0.8, 6.0) during postpartum. Execution was continuously high during pregnancy, low at beginning of postpartum and increased gradually during the 6 months of postpartum. Major barriers to adherence were medication adverse events and difficulties in daily routine. Facilitators were motivation for promoting child-health and social support. The dramatic drop and very slow increase in cART adherence during postpartum might result in viral rebound and drug resistance. Although much attention is devoted to pregnant women, interdisciplinary care should also be provided to women in the community during first trimester of postpartum to support them in sustaining cART adherence.
Resumo:
MOTIVATION: Combinatorial interactions of transcription factors with cis-regulatory elements control the dynamic progression through successive cellular states and thus underpin all metazoan development. The construction of network models of cis-regulatory elements, therefore, has the potential to generate fundamental insights into cellular fate and differentiation. Haematopoiesis has long served as a model system to study mammalian differentiation, yet modelling based on experimentally informed cis-regulatory interactions has so far been restricted to pairs of interacting factors. Here, we have generated a Boolean network model based on detailed cis-regulatory functional data connecting 11 haematopoietic stem/progenitor cell (HSPC) regulator genes. RESULTS: Despite its apparent simplicity, the model exhibits surprisingly complex behaviour that we charted using strongly connected components and shortest-path analysis in its Boolean state space. This analysis of our model predicts that HSPCs display heterogeneous expression patterns and possess many intermediate states that can act as 'stepping stones' for the HSPC to achieve a final differentiated state. Importantly, an external perturbation or 'trigger' is required to exit the stem cell state, with distinct triggers characterizing maturation into the various different lineages. By focusing on intermediate states occurring during erythrocyte differentiation, from our model we predicted a novel negative regulation of Fli1 by Gata1, which we confirmed experimentally thus validating our model. In conclusion, we demonstrate that an advanced mammalian regulatory network model based on experimentally validated cis-regulatory interactions has allowed us to make novel, experimentally testable hypotheses about transcriptional mechanisms that control differentiation of mammalian stem cells. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Resumo:
BACKGROUND: The ambition of most molecular biologists is the understanding of the intricate network of molecular interactions that control biological systems. As scientists uncover the components and the connectivity of these networks, it becomes possible to study their dynamical behavior as a whole and discover what is the specific role of each of their components. Since the behavior of a network is by no means intuitive, it becomes necessary to use computational models to understand its behavior and to be able to make predictions about it. Unfortunately, most current computational models describe small networks due to the scarcity of kinetic data available. To overcome this problem, we previously published a methodology to convert a signaling network into a dynamical system, even in the total absence of kinetic information. In this paper we present a software implementation of such methodology. RESULTS: We developed SQUAD, a software for the dynamic simulation of signaling networks using the standardized qualitative dynamical systems approach. SQUAD converts the network into a discrete dynamical system, and it uses a binary decision diagram algorithm to identify all the steady states of the system. Then, the software creates a continuous dynamical system and localizes its steady states which are located near the steady states of the discrete system. The software permits to make simulations on the continuous system, allowing for the modification of several parameters. Importantly, SQUAD includes a framework for perturbing networks in a manner similar to what is performed in experimental laboratory protocols, for example by activating receptors or knocking out molecular components. Using this software we have been able to successfully reproduce the behavior of the regulatory network implicated in T-helper cell differentiation. CONCLUSION: The simulation of regulatory networks aims at predicting the behavior of a whole system when subject to stimuli, such as drugs, or determine the role of specific components within the network. The predictions can then be used to interpret and/or drive laboratory experiments. SQUAD provides a user-friendly graphical interface, accessible to both computational and experimental biologists for the fast qualitative simulation of large regulatory networks for which kinetic data is not necessarily available.