949 resultados para Drug development


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Shipping list no.: 2004-0116-P (pts. 1A-B), 2004-0162-P (pt.2), 2004-0180-P (pt. 3), 2004-0204-P (pt. 4), 2004-0198-P (pt. 5), 2004-0199-P (pt. 6), 2004-0207-P (pt. 7), 2004-0208-P (pt. 8).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Shipping list no. : 2005-0156-P (pt. 1A), 2005-0131-P (pt. 1B), 2005-0136-P (pt. 2), 2005-0172-P (pt. 3-5, 7), 2005-0185-P (pt. 6), 2005-0168-P (pt. 8), 2006-0066-P (pt. 9).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Advances in molecular biology have given us a wide range of protein and peptide-based drugs that are unsuitable for oral delivery because of their high degree of first-pass metabolism. Though parenteral delivery is the obvious answer, for the successful development of commercial chronic and self-administration usage formulations it is not the ideal choice. Transdermal delivery is emerging as the biggest application target for these agents, however, the skin is extremely efficient at keeping out such large molecular weight compounds and therapeutic levels are never going to be realistically achieved by passive absorption. Physical enhancement mechanisms including: iontophoresis, electroporation, ultrasound, photomechanical waves, microneedles and jet-propelled particles are emerging as solutions to this topical delivery dilemma. Adding proteins and peptides to the list of other large molecular weight drugs with insufficient passive transdermal fluxes to be therapeutically useful, we have a collection of pharmacological agents waiting for efficient delivery methods to be introduced. This article reviews the current state of physical transdermal delivery technology, assesses the pros and cons of each technique and summarises the evidence-base of their drug delivery capabilities.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Regular and systematic monitoring of drug markets provides the basis for evidence-based policy. In Australia, trends in ecstasy and related drug (ERD) markets have been monitored in selected jurisdictions since 2000 and nationally since 2003, by the Party Drugs Initiative (PDI). The PDI maximises the validity of conclusions by triangulating information from (a) interviews with regular ecstasy users (REU), (b) interviews with key experts and (c) indicator data. There is currently no other system in Australia for monitoring these markets systematically; however, the value of the PDI has been constrained by the quality of available data. Difficulties in recruiting and interviewing appropriate consumers (REU) and key experts have been experienced, but largely overcome. Limitations of available indicator data from both health and law enforcement continue to present challenges and there remains considerable scope for enhancing existing routine data collection systems, to facilitate monitoring of ERD markets. With an expanding market for ecstasy and related drugs in Australia, and in the context of indicator data that continue to be limited in scope and detail, there is a strong argument for the continued collection of annual, comparable data from a sentinel group of REU, such as those recruited for the PDI.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

There is currently, no ideal system for studying nasal drug delivery in vitro. The existing techniques such as the Ussing chamber and cell culture all have major disadvantages. Most importantly, none of the existing techniques accurately represent the interior of the nasal cavity, with its airflow and humidity; neither do they allow the investigation of solid dosage forms.The work in this thesis represents the development of an in vitro model system in which the interior characteristics of the nasal cavity are closely represented, and solid or minimal volume dosage forms can be investigated. The complete nasal chamber consists of two sections: a lower tissue, viability chamber and an upper nasal chamber. The lower tissue viability chamber has been shown, using existing tissue viability monitoring techniques, to maintain the viability of a number of epithelial tissues, including porcine and rabbit nasal tissue, and rat ileal and Payers' patch tissue. The complete chamber including the upper nasal chamber has been shown to provide tissue viability for porcine and rabbit nasal tissue above that available using the existing Ussing chamber techniques. Adaptation of the complete system, and the development of the necessary experimental protocols that allow aerosol particle-sizing, together with videography, has shown that the new factors investigated, humidity and airflow, have a measurable effect on the delivered dose from a typical nasal pump. Similarly, adaptation of the chamber to fit under a confocal microscope, and the development of the necessary protocols has shown the effect of surface and size on the penetration of microparticulate materials into nasal epithelial tissues. The system developed in this thesis has been shown to be flexible, in allowing the development of the confocal and particle-sizing systems. For future nasal drug delivery studies, the ability to measure such factors as the size of the delivered system in the nasal cavity, the depth of penetration of the formulation into the tissue are essential. Additionally, to have access to other data such as that obtained from drug transport in the same system, and to have the tissue available for histological examination represents a significant advance in the usefulness of such an in vitro technique for nasal delivery.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Topical and transdermal formulations are promising platforms for the delivery of drugs. A unit dose topical or transdermal drug delivery system that optimises the solubility of drugs within the vehicle provides a novel dosage form for efficacious delivery that also offers a simple manufacture technique is desirable. This study used Witepsol® H15 wax as a abase for the delivery system. One aspect of this project involved determination of the solubility of ibuprofen, flurbiprofen and naproxen in the was using microscopy, Higuchi release kinetics, HyperDSC and mathematical modelling techniques. Correlations between the results obtained via these techniques were noted with additional merits such as provision of valuable information on drug release kinetics and possible interactions between the drug and excipients. A second aspect of this project involved the incorporation of additional excipients: Tween 20 (T), Carbopol®971 (C) and menthol (M) to the wax formulation. On in vitro permeation through porcine skin, the preferred formulations were: ibuprofen (5% w/w) within Witepsol®H15 + 1% w/w T; flurbiprofen (10% w/w) within Witepsol®H15 + 1% w/w T; naproxen (5% w/w) within Witepsol®H15 + 1% w/w T + 1% C and sodium diclofenac (10% w/w) within Witepsol®H15 + 1% w/w T + 1% w/w T + 1% w/w C + 5% w/w M. Unit dose transdermal tablets containing ibuprofen and diclofenac were produced with improved flux compared to marketed products; Voltarol Emugel® demonstrated flux of 1.68x10-3 cm/h compared to 123 x 10-3 cm/h for the optimised product as detailed above; Ibugel Forte® demonstrated a permeation coefficient value of 7.65 x 10-3 cm/h compared to 8.69 x 10-3 cm/h for the optimised product as described above.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The technique of growing human leukaemic cells in diffusion chambers was developed to enable chemicals to be assessed for their ability to induce terminal differentiation. HL-60 promyelocytic leukaemia cell growth, in a lucite chamber with a Millipore filter, was optimised by use of a lateral incision site. Chambers were constructed using 0.45um filters and contained 150ul of serum-free HL-60 cells at a density of 1x106 cells/ml. The chambers were implanted into CBA/Ca mice and spontaneous terminal differentiation of the cells to granulocytes was prevented by the use of serum-free medium. Under these conditions there was an initial growth lag of 72 hours and a logarithmic phase of growth for 96 hours; the cell number reached a plateau after 168 hours of culture in vivo. The amount of drug in the plasma of the animal and in chambers that had been implanted for 5 days, was determined after a single ip injection of equitoxic doses of N-methylformamide, N-ethylformamide, tetramethylurea, N-dibutylformamide, N-tetramethylbutylformamide and hexamethylenebisacetamide. Concentrations of both TMU and HMBA were obtained in the plasma and in the chamber which were pharmacologically effective for the induction of differentiation of HL-60 cells in vitro, that is 12mM TMU and 5mM HMBA. A 4 day regime of treatment of animals implanted with chambers demonstrated that TMU and HMBA induced terminal differentiation of 50% and 35%, respectively, of the implanted HL-60 cells to granulocyte-like cells, assessed by measurement of functional and biochemical markers of maturity. None of the other agents attained concentrations in the plasma that were pharmacologically effective for the induction of differentiation of the cells in vitro and were unable to induce the terminal differentiation of the cells in vivo.