950 resultados para Droplet etching
Resumo:
This thesis evaluated in vivo and in vitro enamel permeability in different physiological and clinical conditions by means of SEM inspection of replicas of enamel surface obtained from polyvinyl siloxane impressions subsequently later cast in polyether impression ma-terial. This technique, not invasive and risk-free, allows the evaluation of fluid outflow from enamel surface and is able to detect the presence of small quantities of fluid, visu-alized as droplets. Fluid outflow on enamel surface represents enamel permeability. This property has a paramount importance in enamel physiolgy and pathology although its ef-fective role in adhesion, caries pathogenesis and prevention today is still not fully under-stood. The aim of the studies proposed was to evaluate enamel permeability changes in differ-ent conditions and to correlate the findings with the actual knowledge about enamel physiology, caries pathogenesis, fluoride and etchinhg treatments. To obtain confirmed data the replica technique has been supported by others specific techniques such as Ra-man and IR spectroscopy and EDX analysis. The first study carried out visualized fluid movement through dental enamel in vivo con-firmed that enamel is a permeable substrate and demonstrated that age and enamel per-meability are closely related. Examined samples from subjects of different ages showed a decreasing number and size of droplets with increasing age: freshly erupted permanent teeth showed many droplets covering the entire enamel surface. Droplets in permanent teeth were prominent along enamel perikymata. These results obtained through SEM inspection of replicas allowed innovative remarks in enamel physiology. An analogous testing has been developed for evaluation of enamel permeability in primary enamel. The results of this second study showed that primary enamel revealed a substantive permeability with droplets covering the entire enamel sur-face without any specific localization accordingly with histological features, without changes during aging signs of post-eruptive maturation. These results confirmed clinical data that showed a higher caries susceptibility for primary enamel and suggested a strong relationship between this one and enamel permeability. Topical fluoride application represents the gold standard for caries prevention although the mechanism of cariostatic effect of fluoride still needs to be clarified. The effects of topical fluoride application on enamel permeability were evaluated. Particularly two dif-ferent treatments (NaF and APF), with different pH, were examined. The major product of topical fluoride application was the deposition of CaF2-like globules. Replicas inspec-tion before and after both treatments at different times intervals and after specific addi-tional clinical interventions showed that such globule formed in vivo could be removed by professional toothbrushing, sonically and chemically by KOH. The results obtained in relation to enamel permeability showed that fluoride treatments temporarily reduced enamel water permeability when CaF2-like globules were removed. The in vivo perma-nence of decreased enamel permeability after CaF2 globules removal has been demon-strated for 1 h for NaF treated teeth and for at least 7 days for APF treated teeth. Important clinical consideration moved from these results. In fact the caries-preventing action of fluoride application may be due, in part, to its ability to decrease enamel water permeability and CaF2 like-globules seem to be indirectly involved in enamel protection over time maintaining low permeability. Others results obtained by metallographic microscope and SEM/EDX analyses of or-thodontic resins fluoride releasing and not demonstrated the relevance of topical fluo-ride application in decreasing the demineralization marks and modifying the chemical composition of the enamel in the treated area. These data obtained in both the experiments confirmed the efficacy of fluoride in caries prevention and contribute to clarify its mechanism of action. Adhesive dentistry is the gold standard for caries treatment and tooth rehabilitation and is founded on important chemical and physical principles involving both enamel and dentine substrates. Particularly acid etching of dental enamel enamel has usually employed in bonding pro-cedures increasing microscopic roughness. Different acids have been tested in the litera-ture suggesting several etching procedures. The acid-induced structural transformations in enamel after different etching treatments by means of Raman and IR spectroscopy analysis were evaluated and these findings were correlated with enamel permeability. Conventional etching with 37% phosphoric acid gel (H3PO4) for 30 s and etching with 15 % HCl for 120 s were investigated. Raman and IR spectroscopy showed that the treatment with both hydrochloric and phosphoric acids induced a decrease in the carbonate content of the enamel apatite. At the same time, both acids induced the formation of HPO42- ions. After H3PO4 treatment the bands due to the organic component of enamel decreased in intensity, while in-creased after HCl treatment. Replicas of H3PO4 treated enamel showed a strongly reduced permeability while replicas of HCl 15% treated samples showed a maintained permeability. A decrease of the enamel organic component, as resulted after H3PO4 treatment, involves a decrease in enamel permeability, while the increase of the organic matter (achieved by HCl treat-ment) still maintains enamel permeability. These results suggested a correlation between the amount of the organic matter, enamel permeability and caries. The results of the different studies carried out in this thesis contributed to clarify and improve the knowledge about enamel properties with important rebounds in theoretical and clinical aspects of Dentistry.
Resumo:
The particle sizes, morphologies, and structures are presented for succinic acid particles formed from the evaporation of uniform droplets created with a vibrating orifice aerosol generator. Particle sizes are monodisperse, and solvent choice is found to be the dominant factor in determining the final morphology and structure. The external particle morphologies range from round to cap shaped, while the surface roughness ranges from fairly smooth to extremely rough and pitted. Internally, the particles have significant void space and noticeable crystals. X-ray diffraction confirms that the particles are crystalline. Thus, the morphologies of the particles take on a crystal filled structure that is unique in comparison to previous particles formed through droplet evaporation. The structure of the particles contains β succinic acid; however, the particles formed from water also contain α succinic acid. α Succinic acid has not previously been able to be formed from solution at near atmospheric conditions. The unique morphologies and ability to identify unexpected polymorphs provide for a potential tool to not only enhance particle engineering but also to identify metastable polymorphs.
Resumo:
There is a need for evaluating zirconia surface modifications and their potential impact on the biological response of osteogenic cells. Grit blasted zirconia discs were either left untreated or underwent acid or alkaline etching. Adhesion and osteogenic differentiation of MG63 cells was determined after one week of culture. The macro-scaled roughness of the grit blasted zirconia discs, independent of the surface treatment, was within a narrow range and only slightly smoother than titanium discs. However, the alkaline- and acid-etching led to an increase of the micro-roughness of the surface. The surface modifications had no effect on cell spreading and did not cause significant change in the expression of differentiation markers. Thus, in this respective setting, morphologic changes observed upon treatment of grit blasted zirconia discs with acid or alkaline do not translate into changes in MG63 cell adhesion or differentiation and are comparable to findings with anodized titanium discs.
Resumo:
The single-electron transistor (SET) is one of the best candidates for future nano electronic circuits because of its ultralow power consumption, small size and unique functionality. SET devices operate on the principle of Coulomb blockade, which is more prominent at dimensions of a few nano meters. Typically, the SET device consists of two capacitively coupled ultra-small tunnel junctions with a nano island between them. In order to observe the Coulomb blockade effects in a SET device the charging energy of the device has to be greater that the thermal energy. This condition limits the operation of most of the existing SET devices to cryogenic temperatures. Room temperature operation of SET devices requires sub-10nm nano-islands due to the inverse dependence of charging energy on the radius of the conducting nano-island. Fabrication of sub-10nm structures using lithography processes is still a technological challenge. In the present investigation, Focused Ion Beam based etch and deposition technology is used to fabricate single electron transistors devices operating at room temperature. The SET device incorporates an array of tungsten nano-islands with an average diameter of 8nm. The fabricated devices are characterized at room temperature and clear Coulomb blockade and Coulomb oscillations are observed. An improvement in the resolution limitation of the FIB etching process is demonstrated by optimizing the thickness of the active layer. SET devices with structural and topological variation are developed to explore their impact on the behavior of the device. The threshold voltage of the device was minimized to ~500mV by minimizing the source-drain gap of the device to 17nm. Vertical source and drain terminals are fabricated to realize single-dot based SET device. A unique process flow is developed to fabricate Si dot based SET devices for better gate controllability in the device characteristic. The device vi parameters of the fabricated devices are extracted by using a conductance model. Finally, characteristic of these devices are validated with the simulated data from theoretical modeling.
Resumo:
OBJECTIVES: To detect the influence of blood contamination (BC) on the bond strength (BS) of a self-etching bonding system (SES) to enamel and dentine. METHODS: 25 human molars were longitudinally sectioned on the mesio-distal axis in order to obtain 50 specimens, which were embedded in acrylic resin. At first, the specimens were ground to expose a flat surface of enamel, and a bond strength test was performed. Afterwards, the samples were ground again in order to obtain a flat surface of dentine. Ten groups (total: n=100) were assigned according to substrate (enamel and dentine), step in the bonding sequence when contamination occurred (before the acidic primer and after the bonding resin), and contamination treatment (dry or rinse and dry procedure). Fresh human blood was introduced either before or after SES application (Clearfil SE Bond) and treated with air drying, or by rinsing and drying following application. Composite resin (Filtek Z-250,3M ESPE) was applied as inverted, truncated cured cones that were debonded in tension. RESULTS: The mean tensile BS values (MPa) for enamel/dentine were 19.4/23.0 and 17.1/10.0 for rinse-and-dry treatment (contamination before and after SES, respectively); while the measurements for the dry treatment, 16.2/23.3 and 0.0/0.0 contamination before and after SES, respectively. CONCLUSIONS: It was determined that blood contamination impaired adhesion to enamel and dentine when it occurred after bond light curing. Among the tested contamination treatments, the rinse-and-dry treatment produced the highest bond strength with BC after SES application, but it was not sufficient to recover the BS in the contamination-free group.
Resumo:
The PAT family of lipid droplet proteins includes 5 members in mammals: perilipin, adipose differentiation-related protein (ADRP), tail-interacting protein of 47 kDa (TIP47), S3-12, and OXPAT. Members of this family are also present in evolutionarily distant organisms, including insects, slime molds and fungi. All PAT proteins share sequence similarity and the ability to bind intracellular lipid droplets, either constitutively or in response to metabolic stimuli, such as increased lipid flux into or out of lipid droplets. Positioned at the lipid droplet surface, PAT proteins manage access of other proteins (lipases) to the lipid esters within the lipid droplet core and can interact with cellular machinery important for lipid droplet biogenesis. Genetic variations in the gene for the best-characterized of the mammalian PAT proteins, perilipin, have been associated with metabolic phenotypes, including type 2 diabetes mellitus and obesity. In this review, we discuss how the PAT proteins regulate cellular lipid metabolism both in mammals and in model organisms.
Resumo:
BACKGROUND: Zirconia (ZrO2 ) has received interest as a dental material; however, little information is available on the impact of surface modifications on the osseointegration of zirconia implants. PURPOSE: The aim of the present study was to determine the effect of acid or alkaline etching of sandblasted ZrO2 implants on bone apposition in vivo. METHODS: Cylindrical ZrO2 implants with two circumferential grooves were placed in the maxilla of 12 miniature pigs. Biopsies were harvested after 1, 2, 4, and 8 weeks of healing. Undecalcified toluidine blue-stained ground sections were produced. The bone-to-implant contact, the bone area, and the presence of multinucleated giant cells were determined by histomorphometry. An uncorrected explorative statistical analysis was performed. RESULTS: Acid etching but not alkaline etching of sandblasted ZrO2 implants caused more bone-to-implant contact than sandblasted ZrO2 implants. The bone area was unaffected by the surface modifications. Acid and alkaline etching both increased the formation of multinucleated giant cells at the implant surface. CONCLUSIONS: This study provides a scientific basis to further investigate the impact of acid etching of sandblasted ZrO2 implants on osseointegration and the role of multinucleated giant cells in this process.
Resumo:
Purpose: To evaluate the effects of human saliva contamination and two decontamination procedures at different stages of the bonding procedure on the bond strength of two one-step self-etching adhesives to primary and permanent dentin. Materials and Methods: Extracted human primary and permanent molars (210 of each) were ground to mid-coronal dentin. The dentin specimens were randomly divided into 7 groups (n = 15/group/molar type) for each adhesive (Xeno V+ and Scotchbond Universal): no saliva contamination (control); saliva contamination before or after light curing of the adhesives followed by air drying, rinsing with water spray/air drying, or by rinsing with water spray/air drying/reapplication of the adhesives. Resin composite (Filtek Z250) was applied on the treated dentin surfaces. The specimens were stored at 37°C and 100% humidity for 24 h. After storage, shear bond strength (SBS) was measured and data analyzed with nonparametric ANOVA followed by exact Wilcoxon rank sum tests. Results: Xeno V+ generated significantly higher SBS than Scotchbond Universal when no saliva contamination occurred. Saliva contamination reduced SBS of Xeno V+, with the reduction being more pronounced when contamination occurred before light curing than after. In both situations, decontamination involving reapplication of the adhesive restored SBS. Saliva contamination had no significant effect on Scotchbond Universal. There were no differences in SBS between primary and permanent teeth. Conclusion: Rinsing with water and air drying followed by reapplication of the adhesive restored bond strength to saliva-contaminated dentin.
Resumo:
Autophagy is a lysosomal bulk degradation pathway for cytoplasmic cargo, such as long-lived proteins, lipids, and organelles. Induced upon nutrient starvation, autophagic degradation is accomplished by the concerted actions of autophagy-related (ATG) proteins. Here we demonstrate that two ATGs, human Atg2A and Atg14L, colocalize at cytoplasmic lipid droplets (LDs) and are functionally involved in controlling the number and size of LDs in human tumor cell lines. We show that Atg2A is targeted to cytoplasmic ADRP-positive LDs that migrate bidirectionally along microtubules. The LD localization of Atg2A was found to be independent of the autophagic status. Further, Atg2A colocalized with Atg14L under nutrient-rich conditions when autophagy was not induced. Upon nutrient starvation and dependent on phosphatidylinositol 3-phosphate [PtdIns(3)P] generation, both Atg2A and Atg14L were also specifically targeted to endoplasmic reticulum-associated early autophagosomal membranes, marked by the PtdIns(3)P effectors double-FYVE containing protein 1 (DFCP1) and WD-repeat protein interacting with phosphoinositides 1 (WIPI-1), both of which function at the onset of autophagy. These data provide evidence for additional roles of Atg2A and Atg14L in the formation of early autophagosomal membranes and also in lipid metabolism.
Resumo:
Hermann Struck
Resumo:
Mechanical stability of EWT solar cells deteriorates when holes are created in the wafer. Nevertheless, the chemical etching after the hole generation process improves the mechanical strength by removing part of the damage produced in the drilling process. Several sets of wafers with alkaline baths of different duration have been prepared. The mechanical strength has been measured by the ring on ring bending test and the failure stresses have been obtained through a FE simulation of the test. This paper shows the comparison of these groups of wafers in order to obtain an optimum value of the decreased thickness produced by the chemical etching
Resumo:
Auxetic materials (or metamaterials) have negative Poisson ratios (NPR) and display the unexpected properties of lateral expansion when stretched, and equal and opposing densification when compressed. Such auxetic materials are being used more frequently in the development of novel products, especially in the fields of intelligent expandable actuators, shape-morphing structures, and minimally invasive implantable devices. Although several micromanufacturing technologies have already been applied to the development of auxetic materials and devices, additional precision is needed to take full advantage of their special mechanical properties. In this study, we present a very promising approach for the development of auxetic materials and devices based on the use of deep reactive ion etching (DRIE). The process stands out for its precision and its potential applications to mass production. To our knowledge, it represents the first time this technology has been applied to the manufacture of auxetic materials with nanometric details. We take into account the present capabilities and challenges linked to the use of DRIE in the development of auxetic materials and auxetic-based devices.
Resumo:
Translation of: Traité de la gravure à l'eau-forte.