987 resultados para Distributed Network Protocol version 3 (DNP3)
Resumo:
The formation and composition of secondary organic aerosol (SOA) from the photooxidation of benzene, p-xylene, and 1,3,5-trimethylbenzene has been simulated using the Master Chemical Mechanism version 3.1 (MCM v3.1) coupled to a representation of the transfer of organic material from the gas to particle phase. The combined mechanism was tested against data obtained from a series of experiments conducted at the European Photoreactor (EUPHORE) outdoor smog chamber in Valencia, Spain. Simulated aerosol mass concentrations compared reasonably well with the measured SOA data only after absorptive partitioning coefficients were increased by a factor of between 5 and 30. The requirement of such scaling was interpreted in terms of the occurrence of unaccounted-for association reactions in the condensed organic phase leading to the production of relatively more nonvolatile species. Comparisons were made between the relative aerosol forming efficiencies of benzene, toluene, p-xylene, and 1,3,5-trimethylbenzene, and differences in the OH-initiated degradation mechanisms of these aromatic hydrocarbons. A strong, nonlinear relationship was observed between measured (reference) yields of SOA and (proportional) yields of unsaturated dicarbonyl aldehyde species resulting from ring-fragmenting pathways. This observation, and the results of the simulations, is strongly suggestive of the involvement of reactive aldehyde species in association reactions occurring in the aerosol phase, thus promoting SOA formation and growth. The effect of NO, concentrations on SOA formation efficiencies (and formation mechanisms) is discussed.
Resumo:
Following on from the companion study (Johnson et al., 2006), a photochemical trajectory model (PTM) has been used to simulate the chemical composition of organic aerosol for selected events during the 2003 TORCH (Tropospheric Organic Chemistry Experiment) field campaign. The PTM incorporates the speciated emissions of 124 nonmethane anthropogenic volatile organic compounds (VOC) and three representative biogenic VOC, a highly-detailed representation of the atmospheric degradation of these VOC, the emission of primary organic aerosol (POA) material and the formation of secondary organic aerosol (SOA) material. SOA formation was represented by the transfer of semi and non-volatile oxidation products from the gas-phase to a condensed organic aerosol-phase, according to estimated thermodynamic equilibrium phase-partitioning characteristics for around 2000 reaction products. After significantly scaling all phase-partitioning coefficients, and assuming a persistent background organic aerosol (both required in order to match the observed organic aerosol loadings), the detailed chemical composition of the simulated SOA has been investigated in terms of intermediate oxygenated species in the Master Chemical Mechanism, version 3.1 ( MCM v3.1). For the various case studies considered, 90% of the simulated SOA mass comprises between ca. 70 and 100 multifunctional oxygenated species derived, in varying amounts, from the photooxidation of VOC of anthropogenic and biogenic origin. The anthropogenic contribution is dominated by aromatic hydrocarbons and the biogenic contribution by alpha-and beta-pinene (which also constitute surrogates for other emitted monoterpene species). Sensitivity in the simulated mass of SOA to changes in the emission rates of anthropogenic and biogenic VOC has also been investigated for 11 case study events, and the results have been compared to the detailed chemical composition data. The role of accretion chemistry in SOA formation, and its implications for the results of the present investigation, is discussed.
Resumo:
The Along-Track Scanning Radiometers (ATSRs) provide a long time-series of measurements suitable for the retrieval of cloud properties. This work evaluates the freely-available Global Retrieval of ATSR Cloud Parameters and Evaluation (GRAPE) dataset (version 3) created from the ATSR-2 (1995�2003) and Advanced ATSR (AATSR; 2002 onwards) records. Users are recommended to consider only retrievals flagged as high-quality, where there is a good consistency between the measurements and the retrieved state (corresponding to about 60% of converged retrievals over sea, and more than 80% over land). Cloud properties are found to be generally free of any significant spurious trends relating to satellite zenith angle. Estimates of the random error on retrieved cloud properties are suggested to be generally appropriate for optically-thick clouds, and up to a factor of two too small for optically-thin cases. The correspondence between ATSR-2 and AATSR cloud properties is high, but a relative calibration difference between the sensors of order 5�10% at 660 nm and 870 nm limits the potential of the current version of the dataset for trend analysis. As ATSR-2 is thought to have the better absolute calibration, the discussion focusses on this portion of the record. Cloud-top heights from GRAPE compare well to ground-based data at four sites, particularly for shallow clouds. Clouds forming in boundary-layer inversions are typically around 1 km too high in GRAPE due to poorly-resolved inversions in the modelled temperature profiles used. Global cloud fields are compared to satellite products derived from the Moderate Resolution Imaging Spectroradiometer (MODIS), Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) measurements, and a climatology of liquid water content derived from satellite microwave radiometers. In all cases the main reasons for differences are linked to differing sensitivity to, and treatment of, multi-layer cloud systems. The correlation coefficient between GRAPE and the two MODIS products considered is generally high (greater than 0.7 for most cloud properties), except for liquid and ice cloud effective radius, which also show biases between the datasets. For liquid clouds, part of the difference is linked to choice of wavelengths used in the retrieval. Total cloud cover is slightly lower in GRAPE (0.64) than the CALIOP dataset (0.66). GRAPE underestimates liquid cloud water path relative to microwave radiometers by up to 100 g m�2 near the Equator and overestimates by around 50 g m�2 in the storm tracks. Finally, potential future improvements to the algorithm are outlined.
High resolution Northern Hemisphere wintertime mid-latitude dynamics during the Last Glacial Maximum
Resumo:
Hourly winter weather of the Last Glacial Maximum (LGM) is simulated using the Community Climate Model version 3 (CCM3) on a globally resolved T170 (75 km) grid. Results are compared to a longer LGM climatological run with the same boundary conditions and monthly saves. Hourly-scale animations are used to enhance interpretations. The purpose of the study is to explore whether additional insights into ice age conditions can be gleaned by going beyond the standard employment of monthly average model statistics to infer ice age weather and climate. Results for both LGM runs indicate a decrease in North Atlantic and increase in North Pacific cyclogenesis. Storm trajectories react to the mechanical forcing of the Laurentide Ice Sheet, with Pacific storms tracking over middle Alaska and northern Canada, terminating in the Labrador Sea. This result is coincident with other model results in also showing a significant reduction in Greenland wintertime precipitation – a response supported by ice core evidence. Higher-temporal resolution puts in sharper focus the close tracking of Pacific storms along the west coast of North America. This response is consistent with increased poleward heat transport in the LGM climatological run and could help explain “early” glacial warming inferred in this region from proxy climate records. Additional analyses shows a large increase in central Asian surface gustiness that support observational inferences that upper-level winds associated with Asian- Pacific storms transported Asian dust to Greenland during the LGM.
Resumo:
Model differences in projections of extratropical regional climate change due to increasing greenhouse gases are investigated using two atmospheric general circulation models (AGCMs): ECHAM4 (Max Planck Institute, version 4) and CCM3 (National Center for Atmospheric Research Community Climate Model version 3). Sea-surface temperature (SST) fields calculated from observations and coupled versions of the two models are used to force each AGCM in experiments based on time-slice methodology. Results from the forced AGCMs are then compared to coupled model results from the Coupled Model Intercomparison Project 2 (CMIP2) database. The time-slice methodology is verified by showing that the response of each model to doubled CO2 and SST forcing from the CMIP2 experiments is consistent with the results of the coupled GCMs. The differences in the responses of the models are attributed to (1) the different tropical SST warmings in the coupled simulations and (2) the different atmospheric model responses to the same tropical SST warmings. Both are found to have important contributions to differences in implied Northern Hemisphere (NH) winter extratropical regional 500 mb height and tropical precipitation climate changes. Forced teleconnection patterns from tropical SST differences are primarily responsible for sensitivity differences in the extratropical North Pacific, but have relatively little impact on the North Atlantic. There are also significant differences in the extratropical response of the models to the same tropical SST anomalies due to differences in numerical and physical parameterizations. Differences due to parameterizations dominate in the North Atlantic. Differences in the control climates of the two coupled models from the current climate, in particular for the coupled model containing CCM3, are also demonstrated to be important in leading to differences in extratropical regional sensitivity.
Resumo:
A new record of sea surface temperature (SST) for climate applications is described. This record provides independent corroboration of global variations estimated from SST measurements made in situ. Infrared imagery from Along-Track Scanning Radiometers (ATSRs) is used to create a 20 year time series of SST at 0.1° latitude-longitude resolution, in the ATSR Reprocessing for Climate (ARC) project. A very high degree of independence of in situ measurements is achieved via physics-based techniques. Skin SST and SST estimated for 20 cm depth are provided, with grid cell uncertainty estimates. Comparison with in situ data sets establishes that ARC SSTs generally have bias of order 0.1 K or smaller. The precision of the ARC SSTs is 0.14 K during 2003 to 2009, from three-way error analysis. Over the period 1994 to 2010, ARC SSTs are stable, with better than 95% confidence, to within 0.005 K yr−1(demonstrated for tropical regions). The data set appears useful for cleanly quantifying interannual variability in SST and major SST anomalies. The ARC SST global anomaly time series is compared to the in situ-based Hadley Centre SST data set version 3 (HadSST3). Within known uncertainties in bias adjustments applied to in situ measurements, the independent ARC record and HadSST3 present the same variations in global marine temperature since 1996. Since the in situ observing system evolved significantly in its mix of measurement platforms and techniques over this period, ARC SSTs provide an important corroboration that HadSST3 accurately represents recent variability and change in this essential climate variable.
Resumo:
Decadal climate predictions exhibit large biases, which are often subtracted and forgotten. However, understanding the causes of bias is essential to guide efforts to improve prediction systems, and may offer additional benefits. Here the origins of biases in decadal predictions are investigated, including whether analysis of these biases might provide useful information. The focus is especially on the lead-time-dependent bias tendency. A “toy” model of a prediction system is initially developed and used to show that there are several distinct contributions to bias tendency. Contributions from sampling of internal variability and a start-time-dependent forcing bias can be estimated and removed to obtain a much improved estimate of the true bias tendency, which can provide information about errors in the underlying model and/or errors in the specification of forcings. It is argued that the true bias tendency, not the total bias tendency, should be used to adjust decadal forecasts. The methods developed are applied to decadal hindcasts of global mean temperature made using the Hadley Centre Coupled Model, version 3 (HadCM3), climate model, and it is found that this model exhibits a small positive bias tendency in the ensemble mean. When considering different model versions, it is shown that the true bias tendency is very highly correlated with both the transient climate response (TCR) and non–greenhouse gas forcing trends, and can therefore be used to obtain observationally constrained estimates of these relevant physical quantities.
Resumo:
Much research has been undertaken into the value of mentoring for beginning teachers. Less research has been done into the mentoring of Overseas Trained Teachers (OTTs). The studies that have been done suggest that mentors’ lack of cultural knowledge and of the pedagogical challenges faced by OTT-mentees may inhibit the integration of such teachers into school life. It may be that effective tailor-made training cannot be provided for OTTs by mentors whose skills or knowledge are insufficient. Lack of understanding of the cultural diversity of mentees may result, as studies show, in mentors failing to address relevant issues during the mentoring process. This study investigates the experiences of OTTs of mentorship in England, and suggests the importance of mentors having understanding of their culturally diverse OTT mentees. The implications of these findings in the context of recent teacher-training policy developments in England are discussed.
Resumo:
Morocco constitutes an important centre of plant diversity and speciation in the Mediterranean Basin. However, numerous species are threatened by issues ranging from human activities to global climatic change. In this study, we present the conservation assessments and Red Listing of the endemic Moroccan monocotyledons according to International Union for Conservation of Nature (IUCN) criteria and categories. For each species, we include basic taxonomic information, local names and synonyms, uses, a distribution map, extent of occurrence, area of occupancy, population size and trend, a description of habitats and ecological requirements, and a discussion of the threats affecting the species and habitats. We assessed the threatened status of the endemic Moroccan monocotyledons at the species level (59 species) using the IUCN Red List criteria and categories (Version 3.1). This study shows the high extinction risk to the Moroccan monocotyledon flora, with 95% of threatened species (20% Critically Endangered, 50% Endangered, 25% Vulnerable) and only 5% not threatened (2% Near Threatened and 3% Least Concern). The flora is thus of conservation concern, which is poorly recognized, both nationally and internationally. The study presents the first part and so far the only national IUCN Red Data List for a large group of Moroccan plants, and thus provides an overview of the threatened Moroccan flora. This IUCN Red List is an important first step towards the recognition of the danger to Moroccan biodiversity hotspots, conservation of threatened species and the raising of public awareness at national and international levels.
Resumo:
In this work, the Cloud Feedback Model Intercomparison (CFMIP) Observation Simulation Package (COSP) is expanded to include scattering and emission effects of clouds and precipitation at passive microwave frequencies. This represents an advancement over the official version of COSP (version 1.4.0) in which only clear-sky brightness temperatures are simulated. To highlight the potential utility of this new microwave simulator, COSP results generated using the climate model EC-Earth's version 3 atmosphere as input are compared with Microwave Humidity Sounder (MHS) channel (190.311 GHz) observations. Specifically, simulated seasonal brightness temperatures (TB) are contrasted with MHS observations for the period December 2005 to November 2006 to identify possible biases in EC-Earth's cloud and atmosphere fields. The EC-Earth's atmosphere closely reproduces the microwave signature of many of the major large-scale and regional scale features of the atmosphere and surface. Moreover, greater than 60 % of the simulated TB are within 3 K of the NOAA-18 observations. However, COSP is unable to simulate sufficiently low TB in areas of frequent deep convection. Within the Tropics, the model's atmosphere can yield an underestimation of TB by nearly 30 K for cloudy areas in the ITCZ. Possible reasons for this discrepancy include both incorrect amount of cloud ice water in the model simulations and incorrect ice particle scattering assumptions used in the COSP microwave forward model. These multiple sources of error highlight the non-unique nature of the simulated satellite measurements, a problem exacerbated by the fact that EC-Earth lacks detailed micro-physical parameters necessary for accurate forward model calculations. Such issues limit the robustness of our evaluation and suggest a general note of caution when making COSP-satellite observation evaluations.
Resumo:
The first agricultural societies were established around 10 ka BP and had spread across much of Europe and southern Asia by 5.5 ka BP with resultant anthropogenic deforestation for crop and pasture land. Various studies (e.g. Joos et al., 2004; Kaplan et al., 2011; Mitchell et al., 2013) have attempted to assess the biogeochemical implications for Holocene climate in terms of increased carbon dioxide and methane emissions. However, less work has been done to examine the biogeophysical impacts of this early land use change. In this study, global climate model simulations with Hadley Centre Coupled Model version 3 (HadCM3) were used to examine the biogeophysical effects of Holocene land cover change on climate, both globally and regionally, from the early Holocene (8 ka BP) to the early industrial era (1850 CE). Two experiments were performed with alternative descriptions of past vegetation: (i) one in which potential natural vegetation was simulated by Top-down Representation of Interactive Foliage and Flora Including Dynamics (TRIFFID) but without land use changes and (ii) one where the anthropogenic land use model Kaplan and Krumhardt 2010 (KK10; Kaplan et al., 2009, 2011) was used to set the HadCM3 crop regions. Snapshot simulations were run at 1000-year intervals to examine when the first signature of anthropogenic climate change can be detected both regionally, in the areas of land use change, and globally. Results from our model simulations indicate that in regions of early land disturbance such as Europe and south-east Asia detectable temperature changes, outside the normal range of variability, are encountered in the model as early as 7 ka BP in the June–July–August (JJA) season and throughout the entire annual cycle by 2–3 ka BP. Areas outside the regions of land disturbance are also affected, with virtually the whole globe experiencing significant temperature changes (predominantly cooling) by the early industrial period. The global annual mean temperature anomalies found in our single model simulations were −0.22 at 1850 CE, −0.11 at 2 ka BP, and −0.03 °C at 7 ka BP. Regionally, the largest temperature changes were in Europe with anomalies of −0.83 at 1850 CE, −0.58 at 2 ka BP, and −0.24 °C at 7 ka BP. Large-scale precipitation features such as the Indian monsoon, the Intertropical Convergence Zone (ITCZ), and the North Atlantic storm track are also impacted by local land use and remote teleconnections. We investigated how advection by surface winds, mean sea level pressure (MSLP) anomalies, and tropospheric stationary wave train disturbances in the mid- to high latitudes led to remote teleconnections.
Resumo:
The latest version of CATH (class, architecture, topology, homology) (version 3.2), released in July 2008 (http://www.cathdb.info), contains 1 14215 domains, 2178 Homologous superfamilies and 1110 fold groups. We have assigned 20 330 new domains, 87 new homologous superfamilies and 26 new folds since CATH release version 3.1. A total of 28 064 new domains have been assigned since our NAR 2007 database publication (CATH version 3.0). The CATH website has been completely redesigned and includes more comprehensive documentation. We have revisited the CATH architecture level as part of the development of a `Protein Chart` and present information on the population of each architecture. The CATHEDRAL structure comparison algorithm has been improved and used to characterize structural diversity in CATH superfamilies and structural overlaps between superfamilies. Although the majority of superfamilies in CATH are not structurally diverse and do not overlap significantly with other superfamilies, similar to 4% of superfamilies are very diverse and these are the superfamilies that are most highly populated in both the PDB and in the genomes. Information on the degree of structural diversity in each superfamily and structural overlaps between superfamilies can now be downloaded from the CATH website.
Resumo:
Advanced Building Energy Data Visualization is a way to detect performance problems in commercialbuildings. By placing sensors in a building that collects data from example, air temperature and electricalpower, then makes it possible to calculate the data in Data Visualization software. This softwaregenerates visual diagrams so the building manager or building operator can see if for example thepower consumption is to high.A first step (before sensors are installed in a building) to see how the energy consumption is in abuilding can be to use a Benchmarking Tool. There is a number of Benchmarking Tools that is availablefor free on the Internet. Each tool have a bit different approach, but they all show how much energyconsumption there is in a building compared to other similar buildings.In this study a new web design for the benchmarking tool CalARCH has been developed. CalARCHis developed at the Berkeley Lab in Berkeley, California, USA. CalARCH uses data collected only frombuildings in California, and is only for comparing buildings in California with other similar buildingsin the state.Five different versions of the web site were made. Then a web survey was done to determine whichversion would be the best for CalARCH. The results showed that Version 5 and Version 3 was the best.Then a new version was made, based on these two versions. This study was made at the LawrenceBerkeley Laboratory.
Resumo:
Toxoplasmosis is one zoonosis caused by Toxoplasma gondii protozoan. Goats, amongst the production animals, are one of the species most susceptible to this parasite, being one them main involved agents in ovine and goat abortions, determining great economic losses and implications for public health, since the presence it parasite in the products of goat origin, consist in one of the main sources of infection for the man. In this study 244 blood samples in 8 farms situated in 4 cities from the Sertão do Cabugi region, Rio Grande do Norte State, northeast of Brazil and, tested by ELISA assay. The results had shown a prevalence of 47.13% for anti- T. gondii antibodies and a significant association between positivity and variable evaluated as age, locality and property. The IgG avidity assay evaluated in 115 positive samples was carried to discriminate acute and chronic infection. Twelve samples (10.4%) had presented antibodies of low avidity while 103 (89.6%) presented high avidity antibodies; indicating that most of the animals was precocious exposure to the parasite. Significant difference was verified only for the variable sex. We also evaluate the capacity of recombinant adenoviruses codifying SAG1, SAG2, SAG3 and CMV in inducing activation of specific immune response in goat. These 109 animals received 109 pfu of the AdSAG1, AdSAG2, AdSAG3, AdCMV or PBS in vaccine protocol with 3 immunizations. Serum samples of the each animal, before and after mmunization, had been submitted to the ELISA. The results demonstrate that the immunizations had induced the production of IgG antibodies specific against T. gondii proteins
Resumo:
This laboratory study involves the participation of a group with professionals from different areas that had contributed to the construction of a multidisciplinary knowledge, about biological response of titanium surfaces modified through thermochemical treatment by plasma. Thus, the crystalline phase was previously characterized in relation to the topography, roughness, molhability and nitrogen concentration in the samples surface. It s indispensable that materials implanted can influence in a good cellular response as well as promotes a bacteria action. Surfaces modified by plasma were exposed to different cultures such as: cellular (human osteoblastic) and bacteria (Staphylococcus epidermidis ATCC35984 and Pseudomonas aeruginosa ATCC 27853) in order to evaluate the biological response. It was evaluated the adhesion, proliferation, morphology and cellular preference of human ostheoblastic cells (HOST), as well as the formation of a biofilm and bacteria proliferation. It was still analyzed the bacteria selectivity ability in relation to the surfaces. The software Image Pro Plus was used to the counting of cells and bacteria adhered to the surface of disks. The results were submitted to the variance analysis (ANOVA), and then, by the Kruskal-Wallis test, using GraphPad Instat ® software, version 3.5 to Windows. The nitrided samples in spite of show a higher roughness and molhability showed a smaller bacteria growing and higher cellular proliferation, when compared to non treated samples, indicating that the treated material present a high efficiency to biomedical implants