939 resultados para Distance between Experts’ Statements
Resumo:
An experimental technique has been developed in order to mimic the effect of landmine loading on materials and structures to be studied in a laboratory setting, without the need for explosives. Compressed gas is discharged beneath a sand layer, simulating the dynamic flow generated by a buried explosive. High speed photography reveals that the stages of soil motion observed during a landmine blast are replicated. The effect of soil saturation and the depth of the sand layer on sand motion are evaluated. Two series of experiments have been performed with the buried charge simulator to characterise subsequent impact of the sand. First, the time variation in pressure and impulse during sand impact on a stationary target is evaluated using a Kolsky bar apparatus. It is found that the pressure pulse imparted to the Kolsky bar consists of two phases: an initial transient phase of high pressure (attributed to wave propagation effects in the impacting sand), followed by a lower pressure phase of longer duration (due to lateral flow of the sand against the Kolsky bar). Both phases make a significant contribution to the total imparted impulse. It is found that wet sand exerts higher peak pressures and imparts a larger total impulse than dry sand. The level of imparted impulse is determined as a function of sand depth, and of stand-off distance between the sand and the impacted end of the Kolsky bar. The second study uses a vertical impulse pendulum to measure the momentum imparted by sand impact to a target which is free to move vertically. The effect of target mass upon imparted momentum is investigated. It is concluded that the laboratory-scale sand impact apparatus is a flexible tool for investigating the interactions between structures and dynamic sand flows. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
We determined the genetic diversity of geographic populations from three spawning grounds (Nyang River, Lhasa River, Shetongmon Reach of Yarlung Zangbo River) of Glyptosternum maculatum with amplified fragment length polymorphism (AFLP) markers. Five primer combinations detected 332 products, 51 of them (15.4%) were polymorphic in at least one population. The Shetongmon population was found to be the richest in genetic diversity as was indicated by the percentage of polymorphic loci and heterozygosity, followed by the Nyang population and the Lhasa population. The pair-wise genetic distance between populations were all very close, ranging from 0.0015 to 0.0042 with an average of 0.0024. The genetic distance was not proportional to the geographic distance. The analysis of molecular variance demonstrated that all variation occurred within populations. The average estimated fixation index (F (st)) of three populations across all polymorphic loci was -0.0184, indicating the absence of genetic differences among the three sampled populations. The differentiation among populations was not significant, and population structure was weak. Our observations will help identify the genetic relationship among populations as the first approach to understand the genetic diversity of Glyptosternum maculatum.
Resumo:
Amplified fragment length polymorphism (AFLP) was used to analyse the genetic structure of 45 individuals of Gymnocypris przewalskii (Kessler, 1876), an endangered and state-protected rare fish species, from three areas [the Heima (HM), Buha (BH) and Shaliu rivers (SL), all draining into Qinghai Lake]. A total of 563 polymorphic loci were detected. The HM, BH and SL populations have 435, 433 and 391 loci, respectively (Zhu and Wu, 1975), which account for 77.26%, 76.91% and 69.45% of the total number of polymorphic loci of each population, respectively. The Nei indices of genetic diversities (H) of the three populations were calculated to be 0.2869 (HM), 0.2884 (BH) and 0.2663 (SL), respectively. Their Shannon informative indices are 0.4244, 0.4251 and 0.3915, respectively. Research results show that the mean genetic distance between HM and BH is the smallest (0.0511), between BH and SL is the second shortest (0.0608), and between HM and SL is the largest (0.0713), with the mean genetic distance among the three populations being over 0.05. Data mentioned above indicate that the three populations have a certain genetic differentiation. The total genetic diversity (H-t = 0.3045) and the mean value of genetic diversity within the population (H-s = 0.2786) indicate that the variations have mainly come from within the population.
Resumo:
The transmiss on time and tunneling probability of an electron through a double quantum dot are studied using the transfer matrix technique. The time-dependent Schrodinger equation is applied for a Gaussian wave packet passing through the double quantum clot. The numerical calculations are carried out for a double quantum clot consisting of GaAs/InAs material. We find that the electron tunneling resonance peaks split when the electron transmits through the double quantum dot. The splitting energy increases as the distance between the two quantum dots decreases. The transmission time can be elicited from the temporal evolution of the Gaussian wave packet in the double quantum dot. The transmission time increases quickly as the thickness of tire barrier increases. The lifetime of the resonance state is calculated tram the temporal evolution of the Gaussian-state at the centers of quantum dots.
Resumo:
Based on the density functional theory, we study the magnetic coupling properties of Mn-doped ZnO nanowires. For the nanowires with passivated surfaces, the antiferromagnetic state is found and the Mn atoms have a clustering tendency. When the distance between two Mn atoms is large, the system energetically favors the paramagnetic or spin-glass state. For the nanowires with unpassivated surfaces, the ferromagnetic (FM) coupling states appear between the two nearest Mn atoms, and the zinc vacancies can further stabilize the FM states between them. The electrons with enough concentration possibly mediate the FM coupling due to the negative exchange splitting of conduction band minimum induced by the s-d coupling, which could be useful in nanomaterial design for spintronics. (C) 2008 American Institute of Physics.
Resumo:
We investigated the transmission probability of a single electron transmission through a quantum ring device based on the single-band effective mass approximation method and transfer matrix theory. The time-dependent Schrodinger equation is applied on a Gaussian wave packet passing through the quantum ring system. The electron tunneling resonance peaks split when the electron transmits through a double quantum ring. The splitting energy increases as the distance between the two quantum rings decreases. We studied the tunneling time through the single electron transmission quantum ring from the temporal evolution of the Gaussian wave packet. The electron probability density is sensitive to the thickness of the barrier between the two quantum rings. (C) 2008 American Institute of Physics.
Resumo:
The ground state binding energy and the average interparticle distances for a hydrogenic impurity in double quantum dots with Gaussian confinement potential are studied by the variational method. The probability density of the electron is calculated, too. The dependence of the binding energy on the impurity position is investigated for GaAs quantum dots. The result shows that the binding energy has a minimum as a function of the distance between the two quantum dots when the impurity is located at the center of one quantum dot or at the center of the edge of one quantum dot. When the impurity is located at the center of the two dots, the binding energy decreases monotonically. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The mandarin keyword spotting system was investigated, and a new approach was proposed based on the principle of homology continuity and point location analysis in high-dimensional space geometry theory which are both parts of biomimetic pattern recognition theory. This approach constructed a hyper-polyhedron with sample points in the training set and calculated the distance between each test point and the hyper-polyhedron. The classification resulted from the value of those distances. The approach was tested by a speech database which was created by ourselves. The performance was compared with the classic HMM approach and the results show that the new approach is much better than HMM approach when the training data is not sufficient.
Resumo:
We proposed a novel methodology, which firstly, extracting features from species' complete genome data, using k-tuple, followed by studying the evolutionary relationship between SARS-CoV and other coronavirus species using the method, called "High-dimensional information geometry". We also used the mothod, namely "caculating of Minimum Spanning Tree", to construct the Phyligenetic tree of the coronavirus. From construction of the unrooted phylogenetic tree, we found out that the evolution distance between SARS-CoV and other coronavirus species is comparatively far. The tree accurately rebuilt the three groups of other coronavirus. We also validated the assertion from other literatures that SARS-CoV is similar to the coronavirus species in Group I.
Resumo:
Based on Stefan-Boltzman and Lambert theorems, the radiation energy distribution on substrate (REDS) from catalyzer with parallel filament geometry has been simulated by variation of filament and system layout in hot-wire chemical vapor deposition. The REDS uniformity is sensitive to the distance between filament and substrate d(f-s) when d(f-s) less than or equal to 4 cm. As d(f-s) > 4 cm, the REDS uniformity is independent of d(f-s) and is mainly determined by filament number and filament separation. Two-dimensional calculation shows that the REDS uniformity is limited by temperature decay at filament edges. The simulation data are in good agreement with experiments. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
The time evolution of the quantum mechanical state of an electron is calculated in the framework of the effective-mass envelope function theory for an InAs/GaAs quantum dot. The results indicate that the superposition state electron density oscillates in the quantum dot, with a period on the order of femtoseconds. The interaction energy E-ij between two electrons located in different quantum dots is calculated for one electron in the ith pure quantum state and another in the jth pure quantum state. We find that E-11]E-12]E-22, and E-ij decreases as the distance between the two quantum dots increases. We present a parameter-phase diagram which defines the parameter region for the use of an InAs/GaAs quantum dot as a two-level quantum system in quantum computation. A static electric field is found to efficiently prolong the decoherence time. Our results should be useful for designing the solid-state implementation of quantum computing. (C) 2001 American Institute of Physics.
Resumo:
The excitation transfer processes in vertically self organized pairs of unequal-sized quantum dots (QD's), which are created in InAs/GaAs bilayers with different InAs deposition amounts in the first and second layers, have been investigated experimentally by photoluminescence technique. The distance between the two dot layers is varied from 3 to 12 nm. The optical properties of the formed pairs of unequal-sized QD's with clearly discernible ground-state transition energy depend on the spacer thickness. When the spacer layer of GaAs is thin enough, only one photoluminescence peak related to the large QD ensemble has been observed as a result of strong electronic coupling in the InAs QD pairs. The results provide evidence for nonresonant energy transfer from the smaller QDs in the second layer to the larger QD's in the first layer in such an asymmetric QD pair.
Resumo:
The scattering matrix method is used to analyze the multiple reflection effect between the laser diode facet and the fiber grating facet by considering the fiber grating external cavity laser diode (FGECL) as a four-mirror cavity laser. When neglecting other important parameters such as butt-coupling distance between the diode and the fiber facets, coupling efficiency, external cavity length, it is shown that low reflectivity is not a crucial factor for the laser characteristics such as SMSR. Experimentally high SMSR fiber grating external cavity laser is fabricated with a relatively large residual facet reflectivity (about 1%), which is coincident with our simulation results.
Resumo:
The linear water wave scattering and radiation by an array of infinitely long horizontal circular cylinders in a two-layer fluid of infinite depth is investigated by use of the multipole expansion method. The diffracted and radiated potentials are expressed as a linear combination of infinite multipoles placed at the centre of each cylinder with unknown coefficients to be determined by the cylinder boundary conditions. Analytical expressions for wave forces, hydrodynamic coefficients, reflection and transmission coefficients and energies are derived. Comparisons are made between the present analytical results and those obtained by the boundary element method, and some examples are presented to illustrate the hydrodynamic behavior of multiple horizontal circular cylinders in a two-layer fluid. It is found that for two submerged circular cylinders the influence of the fluid density ratio on internal-mode wave forces is more appreciable than surface-mode wave forces, and the periodic oscillations of hydrodynamic results occur with the increase of the distance between two cylinders; for four submerged circular cylinders the influence of adding two cylinders on the wave forces of the former cylinders is small in low and high wave frequencies, but the influence is appreciable in intermediate wave frequencies.
Resumo:
The scattering of linear water waves by an infinitely long rectangular structure parallel to a vertical wall in oblique seas is investigated. Analytical expressions for the diffracted potentials are derived using the method of separation of variables. The unknown coefficients in the expressions are determined through the application of the eigenfunction expansion matching method. The expressions for wave forces on the structure are given. The calculated results are compared with those obtained by the boundary element method. In addition, the influences of the wall, the angle of wave incidence, the width of the structure, and the distance between the structure and the wall on wave forces are discussed. The method presented here can be easily extended to the study of the diffraction of obliquely incident waves by multiple rectangular structures.