841 resultados para Disease Progression
Resumo:
Age-related macular degeneration (AMD) is the most common cause of incurable visual impairment in high-income countries. Previous studies report inconsistent associations between AMD and apolipoprotein E (APOE), a lipid transport protein involved in low-density cholesterol modulation. Potential interaction between APOE and sex, and smoking status has been reported. We present a pooled analysis (n = 21,160) demonstrating associations between late AMD and APOe4 (odds ratio [OR] = 0.72 per haplotype; confidence interval [CI]: 0.65-0.74; P = 4.41×10(-11) ) and APOe2 (OR = 1.83 for homozygote carriers; CI: 1.04-3.23; P = 0.04), following adjustment for age group and sex within each study and smoking status. No evidence of interaction between APOE and sex or smoking was found. Ever smokers had significant increased risk relative to never smokers for both neovascular (OR = 1.54; CI: 1.38-1.72; P = 2.8×10(-15) ) and atrophic (OR = 1.38; CI: 1.18-1.61; P = 3.37×10(-5) ) AMD but not early AMD (OR = 0.94; CI: 0.86-1.03; P = 0.16), implicating smoking as a major contributing factor to disease progression from early signs to the visually disabling late forms. Extended haplotype analysis incorporating rs405509 did not identify additional risks beyond e2 and e4 haplotypes. Our expanded analysis substantially improves our understanding of the association between the APOE locus and AMD. It further provides evidence supporting the role of cholesterol modulation, and low-density cholesterol specifically, in AMD disease etiology.
Resumo:
The pathogenesis of diabetic retinopathy is complex, reflecting the array of systemic and tissue-specific metabolic abnormalities. A range of pathogenic pathways are directly linked to hyperglycaemia and dyslipidaemia, and the retina appears to be exquisitely sensitive to damage. Establishing the biochemical and molecular basis for this pathology remains an important research focus. This review concentrates on the formation of a range of protein adducts that form after exposure to modifying intermediates known to be elevated during diabetes. These so-called advanced glycation end products (AGEs) and advanced lipoxidation end products (ALEs) are thought to play an important role in the initiation and progression of diabetic retinopathy, and mechanisms leading to dysfunction and death of various retinal cells are becoming understood. Perspective is provided on AGE/ALE formation in the retina and the impact that such adducts have on retinal cell function. There will be emphasis placed on the role of the receptor for AGEs and how this may modulate retinal pathology, especially in relation to oxidative stress and inflammation. The review will conclude by discussion of strategies to inhibit AGE/ALE formation or harmful receptor interactions in order to prevent disease progression from the point of diabetes diagnosis to sight-threatening proliferative diabetic retinopathy and diabetic macular oedema.
Resumo:
The potential adverse effects on health of diet-derived advanced glycation end-products (AGEs) is of current interest, due to their proposed involvement in the disease progression of diabetic and uraemic conditions. However, accurate information about levels of AGEs in foods is lacking. The objective of this investigation was to determine the level of one particular AGE, N-epsilon-(carboxymethyl)lysine (CML), a marker of AGE formation, in a wide range of foods commonly consumed in a Western style diet. Individual foods (n = 257) were mixed, lyophilised, ground, reduced, fat-extracted, hydrolysed, and underwent solid-phase extraction. Extracts were analysed by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Cereal (2.6 mg/100 g food) and fruit and vegetable (0.13 mg/100 g food) categories had the highest and lowest mean level of CML, respectively, when expressed in mg/100 g food. These data can be used for estimating potential consumer intakes, and provide information that can be used to educated consumers on how to reduce their CML intake. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
PURPOSE The appropriate selection of patients for early clinical trials presents a major challenge. Previous analyses focusing on this problem were limited by small size and by interpractice heterogeneity. This study aims to define prognostic factors to guide risk-benefit assessments by using a large patient database from multiple phase I trials. PATIENTS AND METHODS Data were collected from 2,182 eligible patients treated in phase I trials between 2005 and 2007 in 14 European institutions. We derived and validated independent prognostic factors for 90-day mortality by using multivariate logistic regression analysis. Results The 90-day mortality was 16.5% with a drug-related death rate of 0.4%. Trial discontinuation within 3 weeks occurred in 14% of patients primarily because of disease progression. Eight different prognostic variables for 90-day mortality were validated: performance status (PS), albumin, lactate dehydrogenase, alkaline phosphatase, number of metastatic sites, clinical tumor growth rate, lymphocytes, and WBC. Two different models of prognostic scores for 90-day mortality were generated by using these factors, including or excluding PS; both achieved specificities of more than 85% and sensitivities of approximately 50% when using a score cutoff of 5 or higher. These models were not superior to the previously published Royal Marsden Hospital score in their ability to predict 90-day mortality. CONCLUSION Patient selection using any of these prognostic scores will reduce non-drug-related 90-day mortality among patients enrolled in phase I trials by 50%. However, this can be achieved only by an overall reduction in recruitment to phase I studies of 20%, more than half of whom would in fact have survived beyond 90 days.
Resumo:
Chronic neutrophilic leukemia (CNL) is a rare disease and can cause considerable diagnostic difficulty. Although the V617F JAK2 mutation has been described by several groups to be associated with classical myeloproliferative disorders (MPD), this same mutation has been detected with a low incidence in atypical MPD, such as CNL. Here we report the presence of the V617F mutation in a CNL patient, who is unusual for having survived for more than 96 months, with little disease progression. It remains to be established what role this mutation, which gives cells a proliferative advantage, might play in the pathogenesis and prognosis of rare atypical MPD.
Resumo:
BACKGROUND:
Long-term hormone therapy alone is standard care for metastatic or high-risk, non-metastatic prostate cancer. STAMPEDE--an international, open-label, randomised controlled trial--uses a novel multiarm, multistage design to assess whether the early additional use of one or two drugs (docetaxel, zoledronic acid, celecoxib, zoledronic acid and docetaxel, or zoledronic acid and celecoxib) improves survival in men starting first-line, long-term hormone therapy. Here, we report the preplanned, second intermediate analysis comparing hormone therapy plus celecoxib (arm D) with hormone therapy alone (control arm A).
METHODS:
Eligible patients were men with newly diagnosed or rapidly relapsing prostate cancer who were starting long-term hormone therapy for the first time. Hormone therapy was given as standard care in all trial arms, with local radiotherapy encouraged for newly diagnosed patients without distant metastasis. Randomisation was done using minimisation with a random element across seven stratification factors. Patients randomly allocated to arm D received celecoxib 400 mg twice daily, given orally, until 1 year or disease progression (including prostate-specific antigen [PSA] failure). The intermediate outcome was failure-free survival (FFS) in three activity stages; the primary outcome was overall survival in a subsequent efficacy stage. Research arms were compared pairwise against the control arm on an intention-to-treat basis. Accrual of further patients was discontinued in any research arm showing safety concerns or insufficient evidence of activity (lack of benefit) compared with the control arm. The minimum targeted activity at the second intermediate activity stage was a hazard ratio (HR) of 0·92. This trial is registered with ClinicalTrials.gov, number NCT00268476, and with Current Controlled Trials, number ISRCTN78818544.
FINDINGS:
2043 patients were enrolled in the trial from Oct 17, 2005, to Jan 31, 2011, of whom 584 were randomly allocated to receive hormone therapy alone (control group; arm A) and 291 to receive hormone therapy plus celecoxib (arm D). At the preplanned analysis of the second intermediate activity stage, with 305 FFS events (209 in arm A, 96 in arm D), there was no evidence of an advantage for hormone therapy plus celecoxib over hormone therapy alone: HR 0·94 (95% CI 0·74-1·20). [corrected]. 2-year FFS was 51% (95% CI 46-56) in arm A and 51% (95% CI 43-58) in arm D. There was no evidence of differences in the incidence of adverse events between groups (events of grade 3 or higher were noted at any time in 123 [23%, 95% CI 20-27] patients in arm A and 64 [25%, 19-30] in arm D). The most common grade 3-5 events adverse effects in both groups were endocrine disorders (55 [11%] of patients in arm A vs 19 [7%] in arm D) and musculoskeletal disorders (30 [6%] of patients in arm A vs 15 [6%] in arm D). The independent data monitoring committee recommended stopping accrual to both celecoxib-containing arms on grounds of lack of benefit and discontinuing celecoxib for patients currently on treatment, which was endorsed by the trial steering committee.
INTERPRETATION:
Celecoxib 400 mg twice daily for up to 1 year is insufficiently active in patients starting hormone therapy for high-risk prostate cancer, and we do not recommend its use in this setting. Accrual continues seamlessly to the other research arms and follow-up of all arms will continue to assess effects on overall survival.
Resumo:
Although cystic fibrosis pulmonary infection is polymicrobial, routine laboratory methods focus on the detection of a small number of known pathogens. Recently, the use of strict anaerobic culture techniques and molecular technologies have identified other potential pathogens including anaerobic bacteria. Determining the role of all bacteria in a complex bacterial community and how they interact is extremely important; individual bacteria may affect how the community develops, possess virulence factors, produce quorum-sensing signals, stimulate an immune response or transfer antibiotic resistance genes, which could all contribute to disease progression. There are many challenges to managing cystic fibrosis lung infection but as knowledge about the airway microbiome continues to increase, this may lead to advances in the therapeutic management of the disease. © 2011 Future Medicine Ltd.
Resumo:
A comparison of the clinicopathology of European bat lyssavirus (EBLV) types-1 and -2 and of rabies virus was undertaken. Following inoculation of mice at a peripheral site with these viruses, clinical signs of rabies and distribution of virus antigen in the mouse brain were examined. The appearance of clinical signs of disease varied both within and across the different virus species, with variation in incubation periods and weight loss throughout disease progression. The distribution of viral antigen throughout the regions of the brain examined was similar for each of the isolates during the different stages of disease progression, suggesting that antigen distribution was not associated with clinical presentation. However, specific regions of the brain including the cerebellum, caudal medulla, hypothalamus and thalamus, showed notable differences in the proportion of virus antigen positive cells present in comparison to other brain regions suggesting that these areas are important in disease development irrespective of virus species.
Resumo:
Introduction: Amplicon deep-sequencing using second-generation sequencing technology is an innovative molecular diagnostic technique and enables a highly-sensitive detection of mutations. As an international consortium we had investigated previously the robustness, precision, and reproducibility of 454 amplicon next-generation sequencing (NGS) across 10 laboratories from 8 countries (Leukemia, 2011;25:1840-8).
Aims: In Phase II of the study, we established distinct working groups for various hematological malignancies, i.e. acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), chronic lymphocytic leukemia (CLL), chronic myelogenous leukemia (CML), myelodysplastic syndromes (MDS), myeloproliferative neoplasms (MPN), and multiple myeloma. Currently, 27 laboratories from 13 countries are part of this research consortium. In total, 74 gene targets were selected by the working groups and amplicons were developed for a NGS deep-sequencing assay (454 Life Sciences, Branford, CT). A data analysis pipeline was developed to standardize mutation interpretation both for accessing raw data (Roche Amplicon Variant Analyzer, 454 Life Sciences) and variant interpretation (Sequence Pilot, JSI Medical Systems, Kippenheim, Germany).
Results: We will report on the design, standardization, quality control aspects, landscape of mutations, as well as the prognostic and predictive utility of this assay in a cohort of 8,867 cases. Overall, 1,146 primer sequences were designed and tested. In detail, for example in AML, 924 cases had been screened for CEBPA mutations. RUNX1 mutations were analyzed in 1,888 cases applying the deep-sequencing read counts to study the stability of such mutations at relapse and their utility as a biomarker to detect residual disease. Analyses of DNMT3A (n=1,041) were focused to perform landscape investigations and to address the prognostic relevance. Additionally, this working group is focusing on TET2, ASXL1, and TP53 analyses. A novel prognostic model is being developed allowing stratification of AML into prognostic subgroups based on molecular markers only. In ALL, 1,124 pediatric and adult cases have been screened, including 763 assays for TP53 mutations both at diagnosis and relapse of ALL. Pediatric and adult leukemia expert labs developed additional content to study the mutation incidence of other B and T lineage markers such as IKZF1, JAK2, IL7R, PAX5, EP300, LEF1, CRLF2, PHF6, WT1, JAK1, PTEN, AKT1, IL7R, NOTCH1, CREBBP, or FBXW7. Further, the molecular landscape of CLL is changing rapidly. As such, a separate working group focused on analyses including NOTCH1, SF3B1, MYD88, XPO1, FBXW7 and BIRC3. Currently, 922 cases were screened to investigate the range of mutational burden of NOTCH1 mutations for their prognostic relevance. In MDS, RUNX1 mutation analyses were performed in 977 cases. The prognostic relevance of TP53 mutations in MDS was assessed in additional 327 cases, including isolated deletions of chromosome 5q. Next, content was developed targeting genes of the cellular splicing component, e.g. SF3B1, SRSF2, U2AF1, and ZRSR2. In BCR-ABL1-negative MPN, nine genes of interest (JAK2, MPL, TET2, CBL, KRAS, EZH2, IDH1, IDH2, ASXL1) have been analyzed in a cohort of 155 primary myelofibrosis cases searching for novel somatic mutations and addressing their relevance for disease progression and leukemia transformation. Moreover, an assay was developed and applied to CMML cases allowing the simultaneous analysis of 25 leukemia-associated target genes in a single sequencing run using just 20 ng of starting DNA. Finally, nine laboratories are studying CML, applying ultra-deep sequencing of the BCR-ABL1 tyrosine kinase domain. Analyses were performed on 615 cases investigating the dynamics of expansion of mutated clones under various tyrosine kinase inhibitor therapies.
Conclusion: Molecular characterization of hematological malignancies today requires high diagnostic sensitivity and specificity. As part of the IRON-II study, a network of laboratories analyzed a variety of disease entities applying amplicon-based NGS assays. Importantly, the consortium not only standardized assay design for disease-specific panels, but also achieved consensus on a common data analysis pipeline for mutation interpretation. Distinct working groups have been forged to address scientific tasks and in total 8,867 cases had been analyzed thus far.
Resumo:
Understanding the molecular etiology of cancer and increasing the number of drugs and their targets are critical to cancer management. In our attempt to unravel novel breast-cancer associated proteins, we previously conducted protein expression profiling of the MCF10AT model, which comprises a series of isogenic cell lines that mimic different stages of breast cancer progression. NRD1 expression was found to increase during breast cancer progression. Here, we attempted to confirm the relevance of NRD1 in clinical breast cancer and understand the functional role and mechanism of NRD1 in breast cancer cells. Immunohistochemistry data show that NRD1 expression was elevated in ductal carcinoma in situ and invasive ductal carcinomas compared with normal tissues in 30% of the 26 matched cases studied. Examination of NRD1 expression in tissue microarray comprising >100 carcinomas and subsequent correlation with clinical data revealed that NRD1 expression was significantly associated with tumor size, grade, and nodal status (P <0.05). Silencing of NRD1 reduced MCF10CA1h and MDA-MD-231 breast-cancer-cell proliferation and growth. Probing the oncogenic EGF signaling pathways revealed that NRD1 knock down did not affect overall downstream tyrosine phosphorylation cascades including AKT and MAPK activation. Instead, silencing of NRD1 resulted in a reduction of overall cyclin D1 expression, a reduction of EGF-induced increase in cyclin D1 expression and an increase in apoptotic cell population compared with control cells.
Resumo:
Microalbuminuria is a common diagnosis in the clinical care of patients with type 1 diabetes mellitus. Long-term outcomes after the development of microalbuminuria are variable.
Resumo:
Epidemiological studies show that elevated plasma levels of advanced glycation end products (AGEs) are associated with diabetes, kidney disease, and heart disease. Thus AGEs have been used as disease progression markers. However, the effects of variations in biological sample processing procedures on the level of AGEs in plasma/serum samples have not been investigated. The objective of this investigation was to assess the effect of variations in blood sample collection on measured Ne_(carboxy-methyl)lysine (CML), the best characterised AGE, and its homolog, Ne_(carboxyethyl)lysine (CEL). The investigation examined the effect on CML and CEL of different blood collection tubes, inclusion of a stabilising cocktail, effect of freeze thaw cycles, different storage times and temperatures, and effects of delaying centrifugation on a pooled sample from healthy volunteers. CML and CEL were measured in extracted samples by ultra_performance liquid chromatography-tandem mass spectrometry. Median CML and CEL ranged from 0.132 to 0.140 mM/M lys and from 0.053 to 0.060 mM/M lys, respectively. No significant difference was shown CML or CEL in plasma/serum samples. Therefore samples collected as part of epidemiological studies that do not undergo specific sample treatment at collection are suitable for measuring CML and CEL.
Resumo:
Standardized response criteria to interpret and compare clinical trials are needed for approval of new therapeutic agents by regulatory agencies. The European LeukemiaNet (ELN) response criteria for essential thrombocythemia (ET) and polycythemia vera (PV) issued in 2009 have been widely adopted as end points in a number of recent clinical trials. However, evidence exists that they do not predict response or provide clinically relevant measures of benefit for the patients. This article presents revised recommendations for assessing response in ET and PV provided by a working group established by ELN and International Working Group-Myeloproliferative Neoplasms Research and Treatment. New definitions of complete and partial remission incorporate clinical, hematological, and histological response assessments that include a standardized symptom assessment form and consider absence of disease progression and vascular events. We anticipate that these criteria will be adopted widely to facilitate the development of new and more effective therapies for ET and PV.
Resumo:
Despite recent improvements to current therapies and the emergence of novel agents to manage advanced non-small cell lung cancer (NSCLC), the patients' overall survival remains poor. Re-challenging with first-line chemotherapy upon relapse is common in the management of small cell lung cancer but is not well reported for advanced NSCLC. NSCLC relapse has been attributed to acquired drug resistance, but the repopulation of sensitive clones may also play a role, in which case re-challenge may be appropriate. Here, we report the results of re-challenge with gemcitabine plus carboplatin in 22 patients from a single institution who had previously received gemcitabine plus platinum in the first-line setting and had either partial response or a progression-free interval of longer than 6 months. In this retrospective study, the charts of patients who underwent second-line chemotherapy for NSCLC in our cancer center between January 2005 and April 2010 were reviewed. All the patients who received a combination of gemcitabine and carboplatin for re-challenge were included in the study. These patients were offered second-line treatment on confirmation of clear radiological disease progression. The overall response rate was 15% and disease control rate was 75%. The median survival time was 10.4 months, with 46% of patients alive at 1 year. These results suggest that re-challenge chemotherapy should be considered in selected patients with radiological partial response or a progression-free survival of longer than 6 months to the initial therapy.
Resumo:
Respiratory syncytial viral (RSV) infections are a frequent cause of chronic obstructive pulmonary disease (COPD) exacerbations, which are a major factor in disease progression and mortality. RSV is able to evade antiviral defenses to persist in the lungs of COPD patients. Though RSV infection has been identified in COPD, its contribution to cigarette smoke-induced airway inflammation and lung tissue destruction has not been established. Here we examine the long-term effects of cigarette smoke exposure, in combination with monthly RSV infections, on pulmonary inflammation, protease production and remodeling in mice. RSV exposures enhanced the influx of macrophages, neutrophils and lymphocytes to the airways of cigarette smoke exposed C57BL/6J mice. This infiltration of cells was most pronounced around the vasculature and bronchial airways. By itself, RSV caused significant airspace enlargement and fibrosis in mice and these effects were accentuated with concomitant smoke exposure. Combined stimulation with both smoke and RSV synergistically induced cytokine (IL-1a, IL-17, IFN-c, KC, IL-13, CXCL9, RANTES, MIF and GM-CSF) and protease (MMP-2, -8, -12, -13, -16 and cathepsins E, S, W and Z) expression. In addition, RSV exposure caused marked apoptosis within the airways of infected mice, which was augmented by cigarette smoke exposure. RSV and smoke exposure also reduced protein phosphatase 2A (PP2A) and protein tyrosine phosphates (PTP1B) expression and activity. This is significant as these phosphatases counter smoke-induced inflammation and protease expression. Together, these findings show for the first time that recurrent RSV infection markedly enhances inflammation, apoptosis and tissue destruction in smoke-exposed mice. Indeed, these results indicate that preventing RSV transmission and infection has the potential to significantly impact on COPD severity and progression.