374 resultados para Discretization


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this Thesis is to get in deep in the use of models (conceptual and numerical), as a prediction and analytical tool for hydrogeological studies, mainly from point of view of the mining drainage. In the first place, are developed the basic concepts and the parametric variations range are developed, usually used in the modelization of underground f10w and particle transport, and also the more recommended modelization process, analysing step by step each of its sequences, developed based in the experience of the author, contrasted against the available bibliography. Following MODFLOW is described, as a modelization tool, taking into account the advantages that its more common pre/post-treatment software have (Processing MODFLOW, Mod CAD and Visual MODFLOW). In third place, are introduced the criterions and required parameters to develop a conceptual model, numerical discretization, definition of the boundary and initial conditions, as well as all those factors which affects to the system (antropic or natural), developing the creation process, data introduction, execution of morlel, convergence criterions and calibration and obtaining result, natural of Visual MODFLOUI. Next, five practical cases are analysed, in which the author has been applied MODFLOW, and the different pre/post-treatment software (Processing MODFLOW, Mod CAD and Visual MODFLOW), describing for each one, the objectives, the conceptual model defined, discretization, the parametric definition, sensibility analysis, results reached and future states prediction. In fifth place, are presented a program developed by the author which allow to improve the facilities offered by Mod CAD and Visual MODFLOW, expanding modelization possibilities and connection to other computers. Next step it is presented a series of solutions to the most typical problems which could appear during the modelization with MODFLOW. Finally, the conclusions and recommendation readied are exposed, with the purpose to help in the developing of hydrogeological models both conceptuals and numericals. RESUMEN El objetivo de esta Tesis es profundizar en el empleo de modelos (conceptuales y numéricos), como herramienta de predicción y análisis en estudios hidrogeológicos, fundamentalmente desde el punto de vista de drenaje minero. En primer lugar, se desarrollan los conceptos básicos y los rangos de variación paramétrica, habituales en la modelización de flujos subterráneos y transporte de partículas, así como el proceso de modelización más recomendado, analizando paso a paso cada una de sus secuencias, desarrollado en base a la experiencia del autor, contrastado con la bibliografía disponible. Seguidamente se describe MODFLOW como herramienta de modelización, valorando las ventajas que presentan sus software de pre/post-tratamiento más comunes (Proccesing MODFLOW, Mod CAD y Visual MODFLOW). En tercer lugar, se introducen los criterios y parámetros precisos para desarrollar un modelo conceptual, discretización numérica, definición de las condiciones de contorno e iniciales, así como todos aquellos factores que afectan al sistema (antrópicos o naturales), desarrollando el proceso de creación, introducción de datos, ejecución del modelo, criterios de convergencia y calibración, y obtención de resultados, propios de Visual MODFLOW. A continuación, se analizan cinco casos prácticos, donde el autor ha aplicado MODFLOW, así como diferentes software de pre/post-tratamiento (Proccesing MODFLOW, Mod CAD y Visual MODFLOW), describiendo para cada uno, el objetivo marcado, modelo conceptual definido, discretización, definición paramétrica, análisis de sensibilidad, resultados alcanzados y predicción de estados futuros. En quinto lugar, se presenta un programa desarrollado por el autor, que permite mejorar las prestaciones ofrecidas por MODFLOW y Visual MODFLOW, ampliando las posibilidades de modelización y conexión con otros ordenadores. Seguidamente se plantean una serie de soluciones a los problemas más típicos que pueden producirse durante la modelización con MODFLOW. Por último, se exponen las conclusiones y recomendaciones alcanzadas, con el fin de auxiliar el desarrollo del desarrollo de modelos hidrogeológicos, tanto conceptuales como numéricos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Esta tesis constituye un gran avance en el conocimiento del estudio y análisis de inestabilidades hidrodinámicas desde un punto de vista físico y teórico, como consecuencia de haber desarrollado innovadoras técnicas para la resolución computacional eficiente y precisa de la parte principal del espectro correspondiente a los problemas de autovalores (EVP) multidimensionales que gobiernan la inestabilidad de flujos con dos o tres direcciones espaciales inhomogéneas, denominados problemas de estabilidad global lineal. En el contexto del trabajo de desarrollo de herramientas computacionales presentado en la tesis, la discretización mediante métodos de diferencias finitas estables de alto orden de los EVP bidimensionales y tridimensionales que se derivan de las ecuaciones de Navier-Stokes linealizadas sobre flujos con dos o tres direcciones espaciales inhomogéneas, ha permitido una aceleración de cuatro órdenes de magnitud en su resolución. Esta mejora de eficiencia numérica se ha conseguido gracias al hecho de que usando estos esquemas de diferencias finitas, técnicas eficientes de resolución de problemas lineales son utilizables, explotando el alto nivel de dispersión o alto número de elementos nulos en las matrices involucradas en los problemas tratados. Como más notable consecuencia cabe destacar que la resolución de EVPs multidimensionales de inestabilidad global, que hasta la fecha necesitaban de superordenadores, se ha podido realizar en ordenadores de sobremesa. Además de la solución de problemas de estabilidad global lineal, el mencionado desarrollo numérico facilitó la extensión de las ecuaciones de estabilidad parabolizadas (PSE) lineales y no lineales para analizar la inestabilidad de flujos que dependen fuertemente en dos direcciones espaciales y suavemente en la tercera con las ecuaciones de estabilidad parabolizadas tridimensionales (PSE-3D). Precisamente la capacidad de extensión del novedoso algoritmo PSE-3D para el estudio de interacciones no lineales de los modos de estabilidad, desarrollado íntegramente en esta tesis, permite la predicción de transición en flujos complejos de gran interés industrial y por lo tanto extiende el concepto clásico de PSE, el cuál ha sido empleado exitosamente durante las pasadas tres décadas en el mismo contexto para problemas de capa límite bidimensional. Típicos ejemplos de flujos incompresibles se han analizado en este trabajo sin la necesidad de recurrir a restrictivas presuposiciones usadas en el pasado. Se han estudiado problemas vorticales como es el caso de un vórtice aislado o sistemas de vórtices simulando la estela de alas, en los que la homogeneidad axial no se impone y así se puede considerar la difusión viscosa del flujo. Además, se ha estudiado el chorro giratorio turbulento, cuya inestabilidad se utiliza para mejorar las características de funcionamiento de combustores. En la tesis se abarcan adicionalmente problemas de flujos compresibles. Se presenta el estudio de inestabilidad de flujos de borde de ataque a diferentes velocidades de vuelo. También se analiza la estela formada por un elemento rugoso aislado en capa límite supersónica e hipersónica, mostrando excelentes comparaciones con resultados obtenidos mediante simulación numérica directa. Finalmente, nuevas inestabilidades se han identificado en el flujo hipersónico a Mach 7 alrededor de un cono elíptico que modela el vehículo de pruebas en vuelo HIFiRE-5. Los resultados comparan favorablemente con experimentos en vuelo, lo que subraya aún más el potencial de las metodologías de análisis de estabilidad desarrolladas en esta tesis. ABSTRACT The present thesis constitutes a step forward in advancing the frontiers of knowledge of fluid flow instability from a physical point of view, as a consequence of having been successful in developing groundbreaking methodologies for the efficient and accurate computation of the leading part of the spectrum pertinent to multi-dimensional eigenvalue problems (EVP) governing instability of flows with two or three inhomogeneous spatial directions. In the context of the numerical work presented in this thesis, the discretization of the spatial operator resulting from linearization of the Navier-Stokes equations around flows with two or three inhomogeneous spatial directions by variable-high-order stable finite-difference methods has permitted a speedup of four orders of magnitude in the solution of the corresponding two- and three-dimensional EVPs. This improvement of numerical performance has been achieved thanks to the high-sparsity level offered by the high-order finite-difference schemes employed for the discretization of the operators. This permitted use of efficient sparse linear algebra techniques without sacrificing accuracy and, consequently, solutions being obtained on typical workstations, as opposed to the previously employed supercomputers. Besides solution of the two- and three-dimensional EVPs of global linear instability, this development paved the way for the extension of the (linear and nonlinear) Parabolized Stability Equations (PSE) to analyze instability of flows which depend in a strongly-coupled inhomogeneous manner on two spatial directions and weakly on the third. Precisely the extensibility of the novel PSE-3D algorithm developed in the framework of the present thesis to study nonlinear flow instability permits transition prediction in flows of industrial interest, thus extending the classic PSE concept which has been successfully employed in the same context to boundary-layer type of flows over the last three decades. Typical examples of incompressible flows, the instability of which was analyzed in the present thesis without the need to resort to the restrictive assumptions used in the past, range from isolated vortices, and systems thereof, in which axial homogeneity is relaxed to consider viscous diffusion, as well as turbulent swirling jets, the instability of which is exploited in order to improve flame-holding properties of combustors. The instability of compressible subsonic and supersonic leading edge flows has been solved, and the wake of an isolated roughness element in a supersonic and hypersonic boundary-layer has also been analyzed with respect to its instability: excellent agreement with direct numerical simulation results has been obtained in all cases. Finally, instability analysis of Mach number 7 ow around an elliptic cone modeling the HIFiRE-5 flight test vehicle has unraveled flow instabilities near the minor-axis centerline, results comparing favorably with flight test predictions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As is well known B.E.M. is obtained as a mixture of the integral representation formula of classical elasticity and the discretization philosophy of the finite element method (F.E.M.). The paper presents the application of B.E.M. to elastodynamic problems. Both the transient and steady state solutions are presented as well as some techniques to simplify problems with a free-stress boundary.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Flows of relevance to new generation aerospace vehicles exist, which are weakly dependent on the streamwise direction and strongly dependent on the other two spatial directions, such as the flow around the (flattened) nose of the vehicle and the associated elliptic cone model. Exploiting these characteristics, a parabolic integration of the Navier-Stokes equations is more appropriate than solution of the full equations, resulting in the so-called Parabolic Navier-Stokes (PNS). This approach not only is the best candidate, in terms of computational efficiency and accuracy, for the computation of steady base flows with the appointed properties, but also permits performing instability analysis and laminar-turbulent transition studies a-posteriori to the base flow computation. This is to be contrasted with the alternative approach of using order-of-magnitude more expensive spatial Direct Numerical Simulations (DNS) for the description of the transition process. The PNS equations used here have been formulated for an arbitrary coordinate transformation and the spatial discretization is performed using a novel stable high-order finite-difference-based numerical scheme, ensuring the recovery of highly accurate solutions using modest computing resources. For verification purposes, the boundary layer solution around a circular cone at zero angle of attack is compared in the incompressible limit with theoretical profiles. Also, the recovered shock wave angle at supersonic conditions is compared with theoretical predictions in the same circular-base cone geometry. Finally, the entire flow field, including shock position and compressible boundary layer around a 2:1 elliptic cone is recovered at Mach numbers 3 and 4

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper deals with the boundary element method (BEM) p-convergence approach applied to three-dimensional problems governed by Laplace's equation. The advantages derived from the boundary discretization and hierarchical interpolation functions are collated in order to minimize human effort in preparation of input data and improve numerical results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A nonlinear implicit finite element model for the solution of two-dimensional (2-D) shallow water equations, based on a Galerkin formulation of the 2-D estuaries hydrodynamic equations, has been developed. Spatial discretization has been achieved by the use of isoparametric, Lagrangian elements. To obtain the different element matrices, Simpson numerical integration has been applied. For time integration of the model, several schemes in finite differences have been used: the Cranck-Nicholson iterative method supplies a superior accuracy and allows us to work with the greatest time step Δt; however, central differences time integration produces a greater velocity of calculation. The model has been tested with different examples to check its accuracy and advantages in relation to computation and handling of matrices. Finally, an application to the Bay of Santander is also presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this dissertation a new numerical method for solving Fluid-Structure Interaction (FSI) problems in a Lagrangian framework is developed, where solids of different constitutive laws can suffer very large deformations and fluids are considered to be newtonian and incompressible. For that, we first introduce a meshless discretization based on local maximum-entropy interpolants. This allows to discretize a spatial domain with no need of tessellation, avoiding the mesh limitations. Later, the Stokes flow problem is studied. The Galerkin meshless method based on a max-ent scheme for this problem suffers from instabilities, and therefore stabilization techniques are discussed and analyzed. An unconditionally stable method is finally formulated based on a Douglas-Wang stabilization. Then, a Langrangian expression for fluid mechanics is derived. This allows us to establish a common framework for fluid and solid domains, such that interaction can be naturally accounted. The resulting equations are also in the need of stabilization, what is corrected with an analogous technique as for the Stokes problem. The fully Lagrangian framework for fluid/solid interaction is completed with simple point-to-point and point-to-surface contact algorithms. The method is finally validated, and some numerical examples show the potential scope of applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two mathematical models are used to simulate pollution in the Bay of Santander. The first is the hydrodynamic model that provides the velocity field and height of the water. The second gives the pollutant concentration field as a resultant. Both models are formulated in two-dimensional equations. Linear triangular finite elements are used in the Galerkin procedure for spatial discretization. A finite difference scheme is used for the time integration. At each time step the calculated results of the first model are input to the second model as field data. The efficiency and accuracy of the models are tested by their application to a simple illustrative example. Finally a case study in simulation of pollution evolution in the Bay of Santander is presented

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En esta tesis, el método de estimación de error de truncación conocido como restimation ha sido extendido de esquemas de bajo orden a esquemas de alto orden. La mayoría de los trabajos en la bibliografía utilizan soluciones convergidas en mallas de distinto refinamiento para realizar la estimación. En este trabajo se utiliza una solución en una única malla con distintos órdenes polinómicos. Además, no se requiere que esta solución esté completamente convergida, resultando en el método conocido como quasi-a priori T-estimation. La aproximación quasi-a priori estima el error mientras el residuo del método iterativo no es despreciable. En este trabajo se demuestra que algunas de las hipótesis fundamentales sobre el comportamiento del error, establecidas para métodos de bajo orden, dejan de ser válidas en esquemas de alto orden, haciendo necesaria una revisión completa del comportamiento del error antes de redefinir el algoritmo. Para facilitar esta tarea, en una primera etapa se considera el método conocido como Chebyshev Collocation, limitando la aplicación a geometrías simples. La extensión al método Discontinuouos Galerkin Spectral Element Method presenta dificultades adicionales para la definición precisa y la estimación del error, debidos a la formulación débil, la discretización multidominio y la formulación discontinua. En primer lugar, el análisis se enfoca en leyes de conservación escalares para examinar la precisión de la estimación del error de truncación. Después, la validez del análisis se demuestra para las ecuaciones incompresibles y compresibles de Euler y Navier Stokes. El método de aproximación quasi-a priori r-estimation permite desacoplar las contribuciones superficiales y volumétricas del error de truncación, proveyendo información sobre la anisotropía de las soluciones así como su ratio de convergencia con el orden polinómico. Se demuestra que esta aproximación quasi-a priori produce estimaciones del error de truncación con precisión espectral. ABSTRACT In this thesis, the τ-estimation method to estimate the truncation error is extended from low order to spectral methods. While most works in the literature rely on fully time-converged solutions on grids with different spacing to perform the estimation, only one grid with different polynomial orders is used in this work. Furthermore, a non timeconverged solution is used resulting in the quasi-a priori τ-estimation method. The quasi-a priori approach estimates the error when the residual of the time-iterative method is not negligible. It is shown in this work that some of the fundamental assumptions about error tendency, well established for low order methods, are no longer valid in high order schemes, making necessary a complete revision of the error behavior before redefining the algorithm. To facilitate this task, the Chebyshev Collocation Method is considered as a first step, limiting their application to simple geometries. The extension to the Discontinuous Galerkin Spectral Element Method introduces additional features to the accurate definition and estimation of the error due to the weak formulation, multidomain discretization and the discontinuous formulation. First, the analysis focuses on scalar conservation laws to examine the accuracy of the estimation of the truncation error. Then, the validity of the analysis is shown for the incompressible and compressible Euler and Navier Stokes equations. The developed quasi-a priori τ-estimation method permits one to decouple the interfacial and the interior contributions of the truncation error in the Discontinuous Galerkin Spectral Element Method, and provides information about the anisotropy of the solution, as well as its rate of convergence in polynomial order. It is demonstrated here that this quasi-a priori approach yields a spectrally accurate estimate of the truncation error.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fluid flow and fabric compaction during vacuum assisted resin infusion (VARI) of composite materials was simulated using a level set-based approach. Fluid infusion through the fiber preform was modeled using Darcy’s equations for the fluid flow through a porous media. The stress partition between the fluid and the fiber bed was included by means of Terzaghi’s effective stress theory. Tracking the fluid front during infusion was introduced by means of the level set method. The resulting partial differential equations for the fluid infusion and the evolution of flow front were discretized and solved approximately using the finite differences method with a uniform grid discretization of the spatial domain. The model results were validated against uniaxial VARI experiments through an [0]8 E-glass plain woven preform. The physical parameters of the model were also independently measured. The model results (in terms of the fabric thickness, pressure and fluid front evolution during filling) were in good agreement with the numerical simulations, showing the potential of the level set method to simulate resin infusion

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper a dynamic analysis of transnational shells is presented. The general linear shell theory is used in conjunction with additional shallow and curved plate approximations. In order to apply some type of extended Levy solution, the shell is assumed to be limited by a rectangular plan form, with two opposite edges simply supported (gable boundary conditions). First, the shells free vibrations are studied in the usual way, obtaining for each Fourier term the natural frequencies as solutions of a transcendental equation. However, solving these equations arises enormous computational difficulties. This paper deals specifically with this problem, trying to reduce its dimension by a discretization procedure. In the shell dynamic characteristics, namely the mass. The shell mass is lumped along a family of coordinate lines. Therefore, the natural frequencies for each harmonic term can be found from the solution of a typical matrix eigenvalues problem and standard numerical techniques can be applied. The shell response to forced vibrations, particularly to earthquake excitation, can be determined by using conventional procedure either in the time or in the frequency domain. Finally, extending the above procedure, any system of translational shells under dynamic loading can be studied. Then, by using matrix methods, a general computer program is written and applied to some illustrative examples. Numerical results has been obtained in two cases: circular cylindrical shell and box girder bridge.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel time-stepping shift-invert algorithm for linear stability analysis of laminar flows in complex geometries is presented. This method, based on a Krylov subspace iteration, enables the solution of complex non-symmetric eigenvalue problems in a matrix-free framework. Validations and comparisons to the classical exponential method have been performed in three different cases: (i) stenotic flow, (ii) backward-facing step and (iii) lid-driven swirling flow. Results show that this new approach speeds up the required Krylov subspace iterations and has the capability of converging to specific parts of the global spectrum. It is shown that, although the exponential method remains the method of choice if leading eigenvalues are sought, the performance of the present method could be dramatically improved with the use of a preconditioner. In addition, as opposed to other methods, this strategy can be directly applied to any time-stepper, regardless of the temporal or spatial discretization of the latter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of the project is the evaluation of the code STAR-CCM +, as well as the establishment of guidelines and standardized procedures for the discretization of the area of study and the selection of physical models suitable for the simulation of BWR fuel. For this purpose several of BFBT experiments have simulated provide a data base for the development of experiments for measuring distribution of fractions of holes to changes in power in order to find the most appropriate models for the simulation of the problem.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Numerical simulations of flow surrounding a synthetic jet actuating device are presented. By modifying a dynamic mesh technique available in OpenFoam-a well-documented open-source solver for fluid dynamics, detailed computations of the sinusoidal motion of the synthetic jet diaphragm were possible. Numerical solutions were obtained by solving the two dimensional incompressible viscous N-S equations, with the use of a second order implicit time marching scheme and a central finite volume method for spatial discretization in both streamwise and crossflow directions. A systematic parametric study is reported here, in which the external Reynolds number, the diaphragm amplitude and frequency, and the slot dimensions are varied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this work is to analyze a complex high lift configuration for which significant regions of separated flow are present. Current state of the art methods have some diffculty to predict the origin and the progression of this separated flow when increasing the angle of attack. The mechanisms responsible for the maximum lift limit on multi-element wing con?gurations are not clear; this stability analysis could help to understand the physics behind the phenomenon and to find a relation between the flow separation and the instability onset. The methodology presented herein consists in the computation of a steady base flow solution based on a finite volume discretization and a proposal of the solution for a generalized eigenvalue problem corresponding to the perturbed and linearized problem. The eigenvalue problem has been solved with the Arnoldi iterative method, one of the Krylov subspace projection methods. The described methodology was applied to the NACA0012 test case in subsonic and in transonic conditions and, finally, for the first time to the authors knowledge, on an industrial multi-component geometry, such as the A310 airfoil, in order to identify low frequency instabilities related to the separation. One important conclusion is that for all the analyzed geometries, one unstable mode related to flow separation appears for an angle of attack greater than the one correspondent to the maximum lift coe?cient condition. Finally, an adjoint study was carried out in order to evaluate the receptivity and the structural sensitivity of the geometries, giving an indication of the domain region that could be modified resulting in the biggest change of the flowfield.