982 resultados para Direct Simulation Monte Carlo Method
Resumo:
In this second part of our comparative study inspecting the (dis)similarities between “Stokes” and “Jones,” we present simulation results yielded by two independent Monte Carlo programs: (i) one developed in Bern with the Jones formalism and (ii) the other implemented in Ulm with the Stokes notation. The simulated polarimetric experiments involve suspensions of polystyrene spheres with varying size. Reflection and refraction at the sample/air interfaces are also considered. Both programs yield identical results when propagating pure polarization states, yet, with unpolarized illumination, second order statistical differences appear, thereby highlighting the pre-averaged nature of the Stokes parameters. This study serves as a validation for both programs and clarifies the misleading belief according to which “Jones cannot treat depolarizing effects.”
Resumo:
In regression analysis, covariate measurement error occurs in many applications. The error-prone covariates are often referred to as latent variables. In this proposed study, we extended the study of Chan et al. (2008) on recovering latent slope in a simple regression model to that in a multiple regression model. We presented an approach that applied the Monte Carlo method in the Bayesian framework to the parametric regression model with the measurement error in an explanatory variable. The proposed estimator applied the conditional expectation of latent slope given the observed outcome and surrogate variables in the multiple regression models. A simulation study was presented showing that the method produces estimator that is efficient in the multiple regression model, especially when the measurement error variance of surrogate variable is large.^
Resumo:
The uncertainty propagation in fuel cycle calculations due to Nuclear Data (ND) is a important important issue for : issue for : • Present fuel cycles (e.g. high burnup fuel programme) • New fuel cycles designs (e.g. fast breeder reactors and ADS) Different error propagation techniques can be used: • Sensitivity analysis • Response Response Surface Method Surface Method • Monte Carlo technique Then, p p , , in this paper, it is assessed the imp y pact of ND uncertainties on the decay heat and radiotoxicity in two applications: • Fission Pulse Decay ( y Heat calculation (FPDH) • Conceptual design of European Facility for Industrial Transmutation (EFIT)
Resumo:
Kinetic Monte Carlo (KMC) is a widely used technique to simulate the evolution of radiation damage inside solids. Despite de fact that this technique was developed several decades ago, there is not an established and easy to access simulating tool for researchers interested in this field, unlike in the case of molecular dynamics or density functional theory calculations. In fact, scientists must develop their own tools or use unmaintained ones in order to perform these types of simulations. To fulfil this need, we have developed MMonCa, the Modular Monte Carlo simulator. MMonCa has been developed using professional C++ programming techniques and has been built on top of an interpreted language to allow having a powerful yet flexible, robust but customizable and easy to access modern simulator. Both non lattice and Lattice KMC modules have been developed. We will present in this conference, for the first time, the MMonCa simulator. Along with other (more detailed) contributions in this meeting, the versatility of MMonCa to study a number of problems in different materials (particularly, Fe and W) subject to a wide range of conditions will be shown. Regarding KMC simulations, we have studied neutron-generated cascade evolution in Fe (as a model material). Starting with a Frenkel pair distribution we have followed the defect evolution up to 450 K. Comparison with previous simulations and experiments shows excellent agreement. Furthermore, we have studied a more complex system (He-irradiated W:C) using a previous parametrization [1]. He-irradiation at 4 K followed by isochronal annealing steps up to 500 K has been simulated with MMonCa. The He energy was 400 eV or 3 keV. In the first case, no damage is associated to the He implantation, whereas in the second one, a significant Frenkel pair concentration (evolving into complex clusters) is associated to the He ions. We have been able to explain He desorption both in the absence and in the presence of Frenkel pairs and we have also applied MMonCa to high He doses and fluxes at elevated temperatures. He migration and trapping dominate the kinetics of He desorption. These processes will be discussed and compared to experimental results. [1] C.S. Becquart et al. J. Nucl. Mater. 403 (2010) 75
Resumo:
Ion beam therapy is a valuable method for the treatment of deep-seated and radio-resistant tumors thanks to the favorable depth-dose distribution characterized by the Bragg peak. Hadrontherapy facilities take advantage of the specific ion range, resulting in a highly conformal dose in the target volume, while the dose in critical organs is reduced as compared to photon therapy. The necessity to monitor the delivery precision, i.e. the ion range, is unquestionable, thus different approaches have been investigated, such as the detection of prompt photons or annihilation photons of positron emitter nuclei created during the therapeutic treatment. Based on the measurement of the induced β+ activity, our group has developed various in-beam PET prototypes: the one under test is composed by two planar detector heads, each one consisting of four modules with a total active area of 10 × 10 cm2. A single detector module is made of a LYSO crystal matrix coupled to a position sensitive photomultiplier and is read-out by dedicated frontend electronics. A preliminary data taking was performed at the Italian National Centre for Oncological Hadron Therapy (CNAO, Pavia), using proton beams in the energy range of 93–112 MeV impinging on a plastic phantom. The measured activity profiles are presented and compared with the simulated ones based on the Monte Carlo FLUKA package.
Resumo:
In this study, a method for vehicle tracking through video analysis based on Markov chain Monte Carlo (MCMC) particle filtering with metropolis sampling is proposed. The method handles multiple targets with low computational requirements and is, therefore, ideally suited for advanced-driver assistance systems that involve real-time operation. The method exploits the removed perspective domain given by inverse perspective mapping (IPM) to define a fast and efficient likelihood model. Additionally, the method encompasses an interaction model using Markov Random Fields (MRF) that allows treatment of dependencies between the motions of targets. The proposed method is tested in highway sequences and compared to state-of-the-art methods for vehicle tracking, i.e., independent target tracking with Kalman filtering (KF) and joint tracking with particle filtering. The results showed fewer tracking failures using the proposed method.
Resumo:
Multi-label classification (MLC) is the supervised learning problem where an instance may be associated with multiple labels. Modeling dependencies between labels allows MLC methods to improve their performance at the expense of an increased computational cost. In this paper we focus on the classifier chains (CC) approach for modeling dependencies. On the one hand, the original CC algorithm makes a greedy approximation, and is fast but tends to propagate errors down the chain. On the other hand, a recent Bayes-optimal method improves the performance, but is computationally intractable in practice. Here we present a novel double-Monte Carlo scheme (M2CC), both for finding a good chain sequence and performing efficient inference. The M2CC algorithm remains tractable for high-dimensional data sets and obtains the best overall accuracy, as shown on several real data sets with input dimension as high as 1449 and up to 103 labels.
Resumo:
We review the main results from extensive Monte Carlo (MC) simulations on athermal polymer packings in the bulk and under confinement. By employing the simplest possible model of excluded volume, macromolecules are represented as freely-jointed chains of hard spheres of uniform size. Simulations are carried out in a wide concentration range: from very dilute up to very high volume fractions, reaching the maximally random jammed (MRJ) state. We study how factors like chain length, volume fraction and flexibility of bond lengths affect the structure, shape and size of polymers, their packing efficiency and their phase behaviour (disorder–order transition). In addition, we observe how these properties are affected by confinement realized by flat, impenetrable walls in one dimension. Finally, by mapping the parent polymer chains to primitive paths through direct geometrical algorithms, we analyse the characteristics of the entanglement network as a function of packing density.
Resumo:
We describe Janus, a massively parallel FPGA-based computer optimized for the simulation of spin glasses, theoretical models for the behavior of glassy materials. FPGAs (as compared to GPUs or many-core processors) provide a complementary approach to massively parallel computing. In particular, our model problem is formulated in terms of binary variables, and floating-point operations can be (almost) completely avoided. The FPGA architecture allows us to run many independent threads with almost no latencies in memory access, thus updating up to 1024 spins per cycle. We describe Janus in detail and we summarize the physics results obtained in four years of operation of this machine; we discuss two types of physics applications: long simulations on very large systems (which try to mimic and provide understanding about the experimental non equilibrium dynamics), and low-temperature equilibrium simulations using an artificial parallel tempering dynamics. The time scale of our non-equilibrium simulations spans eleven orders of magnitude (from picoseconds to a tenth of a second). On the other hand, our equilibrium simulations are unprecedented both because of the low temperatures reached and for the large systems that we have brought to equilibrium. A finite-time scaling ansatz emerges from the detailed comparison of the two sets of simulations. Janus has made it possible to perform spin glass simulations that would take several decades on more conventional architectures. The paper ends with an assessment of the potential of possible future versions of the Janus architecture, based on state-of-the-art technology.
Resumo:
We present Tethered Monte Carlo, a simple, general purpose method of computing the effective potential of the order parameter (Helmholtz free energy). This formalism is based on a new statistical ensemble, closely related to the micromagnetic one, but with an extended configuration space (through Creutz-like demons). Canonical averages for arbitrary values of the external magnetic field are computed without additional simulations. The method is put to work in the two-dimensional Ising model, where the existence of exact results enables us to perform high precision checks. A rather peculiar feature of our implementation, which employs a local Metropolis algorithm, is the total absence, within errors, of critical slowing down for magnetic observables. Indeed, high accuracy results are presented for lattices as large as L = 1024.
Resumo:
We present Tethered Monte Carlo, a simple, general purpose method of computing the effective potential of the order parameter (Helmholtz free energy). This formalism is based on a new statistical ensemble, closely related to the micromagnetic one, but with an extended configuration space (through Creutz-like demons). Canonical averages for arbitrary values of the external magnetic field are computed without additional simulations. The method is put to work in the two-dimensional Ising model, where the existence of exact results enables us to perform high precision checks. A rather peculiar feature of our implementation, which employs a local Metropolis algorithm, is the total absence, within errors, of critical slowing down for magnetic observables. Indeed, high accuracy results are presented for lattices as large as L = 1024.
Resumo:
We introduce a new class of quantum Monte Carlo methods, based on a Gaussian quantum operator representation of fermionic states. The methods enable first-principles dynamical or equilibrium calculations in many-body Fermi systems, and, combined with the existing Gaussian representation for bosons, provide a unified method of simulating Bose-Fermi systems. As an application relevant to the Fermi sign problem, we calculate finite-temperature properties of the two dimensional Hubbard model and the dynamics in a simple model of coherent molecular dissociation.
Resumo:
Mitarai [Phys. Fluids 17, 047101 (2005)] compared turbulent combustion models against homogeneous direct numerical simulations with extinction/recognition phenomena. The recently suggested multiple mapping conditioning (MMC) was not considered and is simulated here for the same case with favorable results. Implementation issues crucial for successful MMC simulations are also discussed.
Resumo:
In recent work we have developed a novel variational inference method for partially observed systems governed by stochastic differential equations. In this paper we provide a comparison of the Variational Gaussian Process Smoother with an exact solution computed using a Hybrid Monte Carlo approach to path sampling, applied to a stochastic double well potential model. It is demonstrated that the variational smoother provides us a very accurate estimate of mean path while conditional variance is slightly underestimated. We conclude with some remarks as to the advantages and disadvantages of the variational smoother. © 2008 Springer Science + Business Media LLC.
Resumo:
In this paper we develop set of novel Markov chain Monte Carlo algorithms for Bayesian smoothing of partially observed non-linear diffusion processes. The sampling algorithms developed herein use a deterministic approximation to the posterior distribution over paths as the proposal distribution for a mixture of an independence and a random walk sampler. The approximating distribution is sampled by simulating an optimized time-dependent linear diffusion process derived from the recently developed variational Gaussian process approximation method. Flexible blocking strategies are introduced to further improve mixing, and thus the efficiency, of the sampling algorithms. The algorithms are tested on two diffusion processes: one with double-well potential drift and another with SINE drift. The new algorithm's accuracy and efficiency is compared with state-of-the-art hybrid Monte Carlo based path sampling. It is shown that in practical, finite sample, applications the algorithm is accurate except in the presence of large observation errors and low observation densities, which lead to a multi-modal structure in the posterior distribution over paths. More importantly, the variational approximation assisted sampling algorithm outperforms hybrid Monte Carlo in terms of computational efficiency, except when the diffusion process is densely observed with small errors in which case both algorithms are equally efficient.