621 resultados para Dimensionality
Resumo:
Thesis (Master's)--University of Washington, 2012
Resumo:
Freshness and safety of muscle foods are generally considered as the most important parameters for the food industry. To address the rapid determination of meat spoilage, Fourier transform infrared (FTIR) spectroscopy technique, with the help of advanced learning-based methods, was attempted in this work. FTIR spectra were obtained from the surface of beef samples during aerobic storage at various temperatures, while a microbiological analysis had identified the population of Total viable counts. A fuzzy principal component algorithm has been also developed to reduce the dimensionality of the spectral data. The results confirmed the superiority of the adopted scheme compared to the partial least squares technique, currently used in food microbiology.
Resumo:
Much debate in schizotypal research has centred on the factor structure of the Schizotypal Personality Questionnaire (SPQ), with research variously showing higher-order dimensionality consisting of two to seven dimensions. In addition, cross-cultural support for the stability of those factors remains limited. Here, we examined the factor structure of the SPQ among British and Trinidadian adults. Participants from a White British sub-sample (n = 351) resident in the UK and from an African Caribbean sub-sample (n = 284) resident in Trinidad completed the SPQ. The higher-order factor structure of the SPQ was analysed through confirmatory factor analysis, followed by multiple-group analysis for the model of best-fit. Between-group differences for sex and ethnicity were investigated using multivariate analysis of variance in relation to the higher-order domains. The model of best-fit was the four-factor structure, which demonstrated measurement invariance across groups. Additionally, these data had an adequate fit for two alternative models: a) 3 factors and b) a modified 4-factor. The British sub-sample had significantly higher scores across all domains than the Trinidadian group, and men scored significantly higher on the disorganised domain than women. The four-factor structure received confirmatory support and, importantly, support for use with populations varying in ethnicity and culture.
Resumo:
In this study, we utilise a novel approach to segment out the ventricular system in a series of high resolution T1-weighted MR images. We present a brain ventricles fast reconstruction method. The method is based on the processing of brain sections and establishing a fixed number of landmarks onto those sections to reconstruct the ventricles 3D surface. Automated landmark extraction is accomplished through the use of the self-organising network, the growing neural gas (GNG), which is able to topographically map the low dimensionality of the network to the high dimensionality of the contour manifold without requiring a priori knowledge of the input space structure. Moreover, our GNG landmark method is tolerant to noise and eliminates outliers. Our method accelerates the classical surface reconstruction and filtering processes. The proposed method offers higher accuracy compared to methods with similar efficiency as Voxel Grid.
Resumo:
Dissertação de Mestrado, Psicologia da Educação, especialidade de Contextos Educativos, 2 de Março de 2016, Universidade dos Açores.
Resumo:
Relatório do Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Electrónica e Telecomunicações
Resumo:
Trabalho de Projeto submetido à Escola Superior de Teatro e Cinema para cumprimento dos requisitos necessários à obtenção do grau de Mestre em Teatro - especialização em Encenação
Resumo:
This paper proposes an FPGA-based architecture for onboard hyperspectral unmixing. This method based on the Vertex Component Analysis (VCA) has several advantages, namely it is unsupervised, fully automatic, and it works without dimensionality reduction (DR) pre-processing step. The architecture has been designed for a low cost Xilinx Zynq board with a Zynq-7020 SoC FPGA based on the Artix-7 FPGA programmable logic and tested using real hyperspectral datasets. Experimental results indicate that the proposed implementation can achieve real-time processing, while maintaining the methods accuracy, which indicate the potential of the proposed platform to implement high-performance, low cost embedded systems.
Resumo:
Hyperspectral instruments have been incorporated in satellite missions, providing large amounts of data of high spectral resolution of the Earth surface. This data can be used in remote sensing applications that often require a real-time or near-real-time response. To avoid delays between hyperspectral image acquisition and its interpretation, the last usually done on a ground station, onboard systems have emerged to process data, reducing the volume of information to transfer from the satellite to the ground station. For this purpose, compact reconfigurable hardware modules, such as field-programmable gate arrays (FPGAs), are widely used. This paper proposes an FPGA-based architecture for hyperspectral unmixing. This method based on the vertex component analysis (VCA) and it works without a dimensionality reduction preprocessing step. The architecture has been designed for a low-cost Xilinx Zynq board with a Zynq-7020 system-on-chip FPGA-based on the Artix-7 FPGA programmable logic and tested using real hyperspectral data. Experimental results indicate that the proposed implementation can achieve real-time processing, while maintaining the methods accuracy, which indicate the potential of the proposed platform to implement high-performance, low-cost embedded systems, opening perspectives for onboard hyperspectral image processing.
Resumo:
Introduction: Coordination is a strategy chosen by the central nervous system to control the movements and maintain stability during gait. Coordinated multi-joint movements require a complex interaction between nervous outputs, biomechanical constraints, and pro-prioception. Quantitatively understanding and modeling gait coordination still remain a challenge. Surgeons lack a way to model and appreciate the coordination of patients before and after surgery of the lower limbs. Patients alter their gait patterns and their kinematic synergies when they walk faster or slower than normal speed to maintain their stability and minimize the energy cost of locomotion. The goal of this study was to provide a dynamical system approach to quantitatively describe human gait coordination and apply it to patients before and after total knee arthroplasty. Methods: A new method of quantitative analysis of interjoint coordination during gait was designed, providing a general model to capture the whole dynamics and showing the kinematic synergies at various walking speeds. The proposed model imposed a relationship among lower limb joint angles (hips and knees) to parameterize the dynamics of locomotion of each individual. An integration of different analysis tools such as Harmonic analysis, Principal Component Analysis, and Artificial Neural Network helped overcome high-dimensionality, temporal dependence, and non-linear relationships of the gait patterns. Ten patients were studied using an ambulatory gait device (Physilog®). Each participant was asked to perform two walking trials of 30m long at 3 different speeds and to complete an EQ-5D questionnaire, a WOMAC and Knee Society Score. Lower limbs rotations were measured by four miniature angular rate sensors mounted respectively, on each shank and thigh. The outcomes of the eight patients undergoing total knee arthroplasty, recorded pre-operatively and post-operatively at 6 weeks, 3 months, 6 months and 1 year were compared to 2 age-matched healthy subjects. Results: The new method provided coordination scores at various walking speeds, ranged between 0 and 10. It determined the overall coordination of the lower limbs as well as the contribution of each joint to the total coordination. The difference between the pre-operative and post-operative coordination values were correlated with the improvements of the subjective outcome scores. Although the study group was small, the results showed a new way to objectively quantify gait coordination of patients undergoing total knee arthroplasty, using only portable body-fixed sensors. Conclusion: A new method for objective gait coordination analysis has been developed with very encouraging results regarding the objective outcome of lower limb surgery.
Resumo:
The research begins with a discussion of the worldwide and the Canadian market. The research profiles the examination of the relationship between a person's self concept (as defined by Malhotra) and fashion orientation (as defined by Gutman and Mills), and to understand how these factors are influenced by acculturation, focusing in-depth on their managerial implications. To study these relationships; a random sample of 196 ChineseCanadian female university students living in Canada was given a survey based on Malhotra's self-concept scale, and the SLASIA acculturation scale. Based on multiple regression analysis, findings suggest that the adoption of language and social interaction dimensions of acculturation constructs have significant effects on the relationship between self concept and fashion orientation. This research contributes significantly to both marketing theory and practice. Theoretically, this research develops new insights on the dimensionality of fashion orientation, identifies various moderating effects of acculturation on the relationship of self concept and fashion orientation dimensions, and provides a framework to examine these effects, where results can be generalized across different culture. Practically, marketers can use available findings to improve their understanding of the fashion needs of Chinese-Canadian consumers, and target them based on these findings. The findings provide valuable implications for companies to formulate their fashion marketing strategies for enhance fashion orientation in terms of different dimensions, based on different levels of acculturation.
Resumo:
The main focus of this thesis is to evaluate and compare Hyperbalilearning algorithm (HBL) to other learning algorithms. In this work HBL is compared to feed forward artificial neural networks using back propagation learning, K-nearest neighbor and 103 algorithms. In order to evaluate the similarity of these algorithms, we carried out three experiments using nine benchmark data sets from UCI machine learning repository. The first experiment compares HBL to other algorithms when sample size of dataset is changing. The second experiment compares HBL to other algorithms when dimensionality of data changes. The last experiment compares HBL to other algorithms according to the level of agreement to data target values. Our observations in general showed, considering classification accuracy as a measure, HBL is performing as good as most ANn variants. Additionally, we also deduced that HBL.:s classification accuracy outperforms 103's and K-nearest neighbour's for the selected data sets.
Resumo:
Purple bronze Li0.9Mo6O17 has attracted researchers for its low dimensionality and corresponding properties. Although it has been studied for nearly two decades, there are still some unsolved puzzles with this unique material. Single crystals of Li0.9Mo6O17 were grown using the temperature gradient flux technique in this research. The crystal growth was optimized by experimenting different conditions and good quality crystals were obtained. X-ray diffraction results have confirmed the right phase of the crystals. Resistivity measurements and magnetic susceptibility measurements were carried out, and anomalous electronic behaviors were found. All of the samples showed the metal-insulator transition near 20K, followed by behavior that differs from sample to sample: either superconducting, metallic or insulating behavior was observed below 2K. Li0.9Mo6O17 was considered as a quasi-one-dimensional crystal and also a superconducting crystal, which implies a dimensional crossover may occur at the metal-insulator transition. A two-band scenario of the Luttinger liquid model was used to fit the resistivity data and excellent results were achieved, suggesting that the Luttinger theory is a very good candidate for the explanation of the anomalous behavior of Li0.9Mo6O17. In addition, the susceptibility measurements showed Curie paramagnetism and some temperature independent paramagnetism at low temperature. The absence of any anomalous magnetic feature near 20K where the resistivity upturn takes place, suggests that a charge density wave mechanism, which has been proposed by some researchers, is not responsible for the unique properties of Li0.9Mo6O17.
Resumo:
The curse of dimensionality is a major problem in the fields of machine learning, data mining and knowledge discovery. Exhaustive search for the most optimal subset of relevant features from a high dimensional dataset is NP hard. Sub–optimal population based stochastic algorithms such as GP and GA are good choices for searching through large search spaces, and are usually more feasible than exhaustive and deterministic search algorithms. On the other hand, population based stochastic algorithms often suffer from premature convergence on mediocre sub–optimal solutions. The Age Layered Population Structure (ALPS) is a novel metaheuristic for overcoming the problem of premature convergence in evolutionary algorithms, and for improving search in the fitness landscape. The ALPS paradigm uses an age–measure to control breeding and competition between individuals in the population. This thesis uses a modification of the ALPS GP strategy called Feature Selection ALPS (FSALPS) for feature subset selection and classification of varied supervised learning tasks. FSALPS uses a novel frequency count system to rank features in the GP population based on evolved feature frequencies. The ranked features are translated into probabilities, which are used to control evolutionary processes such as terminal–symbol selection for the construction of GP trees/sub-trees. The FSALPS metaheuristic continuously refines the feature subset selection process whiles simultaneously evolving efficient classifiers through a non–converging evolutionary process that favors selection of features with high discrimination of class labels. We investigated and compared the performance of canonical GP, ALPS and FSALPS on high–dimensional benchmark classification datasets, including a hyperspectral image. Using Tukey’s HSD ANOVA test at a 95% confidence interval, ALPS and FSALPS dominated canonical GP in evolving smaller but efficient trees with less bloat expressions. FSALPS significantly outperformed canonical GP and ALPS and some reported feature selection strategies in related literature on dimensionality reduction.
Resumo:
The curse of dimensionality is a major problem in the fields of machine learning, data mining and knowledge discovery. Exhaustive search for the most optimal subset of relevant features from a high dimensional dataset is NP hard. Sub–optimal population based stochastic algorithms such as GP and GA are good choices for searching through large search spaces, and are usually more feasible than exhaustive and determinis- tic search algorithms. On the other hand, population based stochastic algorithms often suffer from premature convergence on mediocre sub–optimal solutions. The Age Layered Population Structure (ALPS) is a novel meta–heuristic for overcoming the problem of premature convergence in evolutionary algorithms, and for improving search in the fitness landscape. The ALPS paradigm uses an age–measure to control breeding and competition between individuals in the population. This thesis uses a modification of the ALPS GP strategy called Feature Selection ALPS (FSALPS) for feature subset selection and classification of varied supervised learning tasks. FSALPS uses a novel frequency count system to rank features in the GP population based on evolved feature frequencies. The ranked features are translated into probabilities, which are used to control evolutionary processes such as terminal–symbol selection for the construction of GP trees/sub-trees. The FSALPS meta–heuristic continuously refines the feature subset selection process whiles simultaneously evolving efficient classifiers through a non–converging evolutionary process that favors selection of features with high discrimination of class labels. We investigated and compared the performance of canonical GP, ALPS and FSALPS on high–dimensional benchmark classification datasets, including a hyperspectral image. Using Tukey’s HSD ANOVA test at a 95% confidence interval, ALPS and FSALPS dominated canonical GP in evolving smaller but efficient trees with less bloat expressions. FSALPS significantly outperformed canonical GP and ALPS and some reported feature selection strategies in related literature on dimensionality reduction.