985 resultados para Diffuse Urbanization
Resumo:
Accurately assessing the extent of myocardial tissue injury induced by Myocardial infarction (MI) is critical to the planning and optimization of MI patient management. With this in mind, this study investigated the feasibility of using combined fluorescence and diffuse reflectance spectroscopy to characterize a myocardial infarct at the different stages of its development. An animal study was conducted using twenty male Sprague-Dawley rats with MI. In vivo fluorescence spectra at 337 nm excitation and diffuse reflectance between 400 nm and 900 nm were measured from the heart using a portable fiber-optic spectroscopic system. Spectral acquisition was performed on (1) the normal heart region; (2) the region immediately surrounding the infarct; and (3) the infarcted region—one, two, three and four weeks into MI development. The spectral data were divided into six subgroups according to the histopathological features associated with various degrees/severities of myocardial tissue injury as well as various stages of myocardial tissue remodeling, post infarction. Various data processing and analysis techniques were employed to recognize the representative spectral features corresponding to various histopathological features associated with myocardial infarction. The identified spectral features were utilized in discriminant analysis to further evaluate their effectiveness in classifying tissue injuries induced by MI. In this study, it was observed that MI induced significant alterations (p < 0.05) in the diffuse reflectance spectra, especially between 450 nm and 600 nm, from myocardial tissue within the infarcted and surrounding regions. In addition, MI induced a significant elevation in fluorescence intensities at 400 and 460 nm from the myocardial tissue from the same regions. The extent of these spectral alterations was related to the duration of the infarction. Using the spectral features identified, an effective tissue injury classification algorithm was developed which produced a satisfactory overall classification result (87.8%). The findings of this research support the concept that optical spectroscopy represents a useful tool to non-invasively determine the in vivo pathophysiological features of a myocardial infarct and its surrounding tissue, thereby providing valuable real-time feedback to surgeons during various surgical interventions for MI.
Resumo:
Accurately assessing the extent of myocardial tissue injury induced by Myocardial infarction (MI) is critical to the planning and optimization of MI patient management. With this in mind, this study investigated the feasibility of using combined fluorescence and diffuse reflectance spectroscopy to characterize a myocardial infarct at the different stages of its development. An animal study was conducted using twenty male Sprague-Dawley rats with MI. In vivo fluorescence spectra at 337 nm excitation and diffuse reflectance between 400 nm and 900 nm were measured from the heart using a portable fiber-optic spectroscopic system. Spectral acquisition was performed on - (1) the normal heart region; (2) the region immediately surrounding the infarct; and (3) the infarcted region - one, two, three and four weeks into MI development. The spectral data were divided into six subgroups according to the histopathological features associated with various degrees / severities of myocardial tissue injury as well as various stages of myocardial tissue remodeling, post infarction. Various data processing and analysis techniques were employed to recognize the representative spectral features corresponding to various histopathological features associated with myocardial infarction. The identified spectral features were utilized in discriminant analysis to further evaluate their effectiveness in classifying tissue injuries induced by MI. In this study, it was observed that MI induced significant alterations (p < 0.05) in the diffuse reflectance spectra, especially between 450 nm and 600 nm, from myocardial tissue within the infarcted and surrounding regions. In addition, MI induced a significant elevation in fluorescence intensities at 400 and 460 nm from the myocardial tissue from the same regions. The extent of these spectral alterations was related to the duration of the infarction. Using the spectral features identified, an effective tissue injury classification algorithm was developed which produced a satisfactory overall classification result (87.8%). The findings of this research support the concept that optical spectroscopy represents a useful tool to non-invasively determine the in vivo pathophysiological features of a myocardial infarct and its surrounding tissue, thereby providing valuable real-time feedback to surgeons during various surgical interventions for MI.
Resumo:
The primary purpose of this thesis was to present a theoretical large-signal analysis to study the power gain and efficiency of a microwave power amplifier for LS-band communications using software simulation. Power gain, efficiency, reliability, and stability are important characteristics in the power amplifier design process. These characteristics affect advance wireless systems, which require low-cost device amplification without sacrificing system performance. Large-signal modeling and input and output matching components are used for this thesis. Motorola's Electro Thermal LDMOS model is a new transistor model that includes self-heating affects and is capable of small-large signal simulations. It allows for most of the design considerations to be on stability, power gain, bandwidth, and DC requirements. The matching technique allows for the gain to be maximized at a specific target frequency. Calculations and simulations for the microwave power amplifier design were performed using Matlab and Microwave Office respectively. Microwave Office is the simulation software used in this thesis. The study demonstrated that Motorola's Electro Thermal LDMOS transistor in microwave power amplifier design process is a viable solution for common-source amplifier applications in high power base stations. The MET-LDMOS met the stability requirements for the specified frequency range without a stability-improvement model. The power gain of the amplifier circuit was improved through proper microwave matching design using input/output-matching techniques. The gain and efficiency of the amplifier improve approximately 4dB and 7.27% respectively. The gain value is roughly .89 dB higher than the maximum gain specified by the MRF21010 data sheet specifications. This work can lead to efficient modeling and development of high power LDMOS transistor implementations in commercial and industry applications.
Resumo:
In questo lavoro di tesi verrà affrontato uno studio sugli ammassi di galassie che costituiscono le strutture virializzate più grandi dell’Universo. L’analisi delle emissioni provenienti dall’ICM (Intracluster Medium) consente di ottenere informazioni su alcuni dei processi che caratterizzano la dinamica degli ammassi di galassie, come merger e cooling flow, e in particolare di testare le attuali ipotesi sulla formazione ed evoluzione degli ammassi. Le radiazioni provenienti dal gas extragalattico possono essere sia di tipo termico che non termico: le prime causate dal meccanismo di Bremsstrahlung termica e appartenenti alla banda X, le seconde invece dovute prevalentemente dall’emissione di Sincrotrone in banda Radio. Durante lo studio degli ammassi di galassie verranno approfondite le principali radiosorgenti diffuse: Aloni, mini-Aloni e Relitti, focalizzando lo studio su questi ultimi e analizzando un campione di dati ad essi relativi, con lo scopo di trovare un’eventuale correlazione tra alcune delle loro proprietà. La ricerca sugli ammassi di galassie risulta importante in quanto, trattandosi delle più grandi strutture dell’Universo che abbiano raggiunto l’equilibrio viriale, il loro studio risulta un valido strumento per la verifica dell’attuale Modello Cosmologico.
Resumo:
Diffuse intrinsic pontine glioma (DIPG) is a rare and incurable brain tumor that arises predominately in children and involves the pons, a structure that along with the midbrain and medulla makes up the brainstem. We have previously developed genetically engineered mouse models of brainstem glioma using the RCAS/Tv-a system by targeting PDGF-B overexpression, p53 loss, and H3.3K27M mutation to Nestin-expressing brainstem progenitor cells of the neonatal mouse. Here we describe a novel mouse model targeting these same genetic alterations to Pax3-expressing cells, which in the neonatal mouse pons consist of a Pax3+/Nestin+/Sox2+ population lining the fourth ventricle and a Pax3+/NeuN+ parenchymal population. Injection of RCAS-PDGF-B into the brainstem of Pax3-Tv-a mice at postnatal day 3 results in 40% of mice developing asymptomatic low-grade glioma. A mixture of low- and high-grade glioma results from injection of Pax3-Tv-a;p53(fl/fl) mice with RCAS-PDGF-B and RCAS-Cre, with or without RCAS-H3.3K27M. These tumors are Ki67+, Nestin+, Olig2+, and largely GFAP- and can arise anywhere within the brainstem, including the classic DIPG location of the ventral pons. Expression of the H3.3K27M mutation reduces overall H3K27me3 as compared with tumors without the mutation, similar to what has been previously shown in human and mouse tumors. Thus, we have generated a novel genetically engineered mouse model of DIPG, which faithfully recapitulates the human disease and represents a novel platform with which to study the biology and treatment of this deadly disease.
Resumo:
Diffuse intrinsic pontine glioma (DIPG) is a rare and incurable brain tumor that arises in the brainstem of children predominantly between the ages of 6 and 8. Its intricate morphology and involvement of normal pons tissue precludes surgical resection, and the standard of care today remains fractionated radiation alone. In the past 30 years, there have been no significant advances made in the treatment of DIPG. This is largely because we lack good models of DIPG and therefore have little biological basis for treatment. In recent years, however, due to increased biopsy and acquisition of autopsy specimens, research is beginning to unravel the genetic and epigenetic drivers of DIPG. Insight gleaned from these studies has led to improvements in approaches to both model these tumors in the lab and to potentially treat them in the clinic. This review will detail the initial strides toward modeling DIPG in animals, which included allograft and xenograft rodent models using non-DIPG glioma cells. Important advances in the field came with the development of in vitro cell and in vivo xenograft models derived directly from autopsy material of DIPG patients or from human embryonic stem cells. Finally, we will summarize the progress made in the development of genetically engineered mouse models of DIPG. Cooperation of studies incorporating all of these modeling systems to both investigate the unique mechanisms of gliomagenesis in the brainstem and to test potential novel therapeutic agents in a preclinical setting will result in improvement in treatments for DIPG patients.
Resumo:
Although urbanization in smaller cities is arguably not imperative, the future of urban living is no longer expected to be principally in mega-cities. People increasingly live in intermediate and smaller cities, in line with the proportion of people residing in urban areas, which is also gradually rising. Smaller cities in Indonesia, like other smaller cities in the developing world, are relatively densely populated, and many of them are experiencing extended urbanization, thereby exceeding their administrative boundaries. This paper seeks to explore the factors triggering urban development in these smaller cities, for a case in Indonesia. Urban change in Cirebon Region has accelerated in recent years, very much in line with the decentralization policy in Indonesia. This paper shows how urban change is in!uenced by economic restructuring, which encourages people to live closer to the core of the region, representing a new link between the core and new emerging urban areas in the region. This paper reveals these attributes to identify the characteristics of smaller urban centres, thereby contributing a more nuanced image of small cities in general.
Resumo:
Extremely broad emission wings at Hβ and Hα have been found in VLT-FLAMES Tarantula Survey data for five very luminous BA supergiants in or near 30 Doradus in the Large Magellanic Cloud. The profiles of both lines are extremely asymmetrical, which we have found to be caused by very broad diffuse interstellar bands (DIBs) in the longward wing of Hβ and the shortward wing of Hα. These DIBs are well known to interstellar but not to many stellar specialists, so that the asymmetries may be mistaken for intrinsic features. The broad emission wings are generally ascribed to electron scattering, although we note difficulties for that interpretation in some objects. Such profiles are known in some Galactic hyper/supergiants and are also seen in both active and quiescent Luminous Blue Variables (LBVs). No prior or current LBV activity is known in these 30 Dor stars, although a generic relationship to LBVs is not excluded; subject to further observational and theoretical investigation, it is possible that these very luminous supergiants are approaching the LBV stage for the first time. Their locations in the HRD and presumed evolutionary tracks are consistent with that possibility. The available evidence for spectroscopic variations of these objects is reviewed, while recent photometric monitoring does not reveal variability. A search for circumstellar nebulae has been conducted, with an indeterminate result for one of them.
Resumo:
Zoonotic parasitic diseases are increasingly impacting human populations due to the effects of globalization, urbanization and climate change. Here we review the recent literature on the most important helminth zoonoses, including reports of incidence and prevalence. We discuss those helminth diseases which are increasing in endemic areas and consider their geographical spread into new regions within the framework of globalization, urbanization and climate change to determine the effect these variables are having on disease incidence, transmission and the associated challenges presented for public health initiatives, including control and elimination.
Resumo:
The pathogenesis of diffuse large B-cell lymphoma (DLBCL) remains partially unknown. The analysis of the B-cell receptor of the malignant cells could contribute to a better understanding of the DLBCL biology. We studied the molecular features of the immunoglobulin heavy chain (IGH) rearrangements in 165 patients diagnosed with DLBCL not otherwise specified. Clonal IGH rearrangements were amplified according to the BIOMED-2 protocol and PCR products were sequenced directly. We also analyzed the criteria for stereotyped patterns in all complete IGHV-IGHD-IGHJ (V-D-J) sequences. Complete V-D-J rearrangements were identified in 130 of 165 patients. Most cases (89%) were highly mutated, but 12 sequences were truly unmutated or minimally mutated. Three genes, IGHV4-34, IGHV3-23, and IGHV4-39, accounted for one third of the whole cohort, including an overrepresentation of IGHV4-34 (15.5% overall). Interestingly, all IGHV4-34 rearrangements and all unmutated sequences belonged to the nongerminal center B-cell-like (non-GCB) subtype. Overall, we found three cases following the current criteria for stereotyped heavy chain VH CDR3 sequences, two of them belonging to subsets previously described in CLL. IGHV gene repertoire is remarkably biased, implying an antigen-driven origin in DLBCL. The particular features in the sequence of the immunoglobulins suggest the existence of particular subgroups within the non-GCB subtype.
Resumo:
L'imagerie par tomographie optique diffuse requiert de modéliser la propagation de la lumière dans un tissu biologique pour une configuration optique et géométrique donnée. On appelle cela le problème direct. Une nouvelle approche basée sur la méthode des différences finies pour modéliser numériquement via l'équation de la diffusion (ED) la propagation de la lumière dans le domaine temporel dans un milieu inhomogène 3D avec frontières irrégulières est développée pour le cas de l'imagerie intrinsèque, c'est-à-dire l'imagerie des paramètres optiques d'absorption et de diffusion d'un tissu. Les éléments finis, lourds en calculs, car utilisant des maillages non structurés, sont généralement préférés, car les différences finies ne permettent pas de prendre en compte simplement des frontières irrégulières. L'utilisation de la méthode de blocking-off ainsi que d'un filtre de Sobel en 3D peuvent en principe permettre de surmonter ces difficultés et d'obtenir des équations rapides à résoudre numériquement avec les différences finies. Un algorithme est développé dans le présent ouvrage pour implanter cette approche et l'appliquer dans divers cas puis de la valider en comparant les résultats obtenus à ceux de simulations Monte-Carlo qui servent de référence. L'objectif ultime du projet est de pouvoir imager en trois dimensions un petit animal, c'est pourquoi le modèle de propagation est au coeur de l'algorithme de reconstruction d'images. L'obtention d'images requière la résolution d'un problème inverse de grandes dimensions et l'algorithme est basé sur une fonction objective que l'on minimise de façon itérative à l'aide d'une méthode basée sur le gradient. La fonction objective mesure l'écart entre les mesures expérimentales faites sur le sujet et les prédictions de celles-ci obtenues du modèle de propagation. Une des difficultés dans ce type d'algorithme est l'obtention du gradient. Ceci est fait à l'aide de variables auxiliaire (ou adjointes). Le but est de développer et de combiner des méthodes qui permettent à l'algorithme de converger le plus rapidement possible pour obtenir les propriétés optiques les plus fidèles possible à la réalité capable d'exploiter la dépendance temporelle des mesures résolues en temps, qui fournissent plus d'informations tout autre type de mesure en TOD. Des résultats illustrant la reconstruction d'un milieu complexe comme une souris sont présentés pour démontrer le potentiel de notre approche.
Resumo:
Calcium ions are an important second messenger in living cells. Indeed calcium signals in the form of waves have been the subject of much recent experimental interest. It is now well established that these waves are composed of elementary stochastic release events (calcium puffs or sparks) from spatially localised calcium stores. The aim of this paper is to analyse how the stochastic nature of individual receptors within these stores combines to create stochastic behaviour on long timescales that may ultimately lead to waves of activity in a spatially extended cell model. Techniques from asymptotic analysis and stochastic phase-plane analysis are used to show that a large cluster of receptor channels leads to a release probability with a sigmoidal dependence on calcium density. This release probability is incorporated into a computationally inexpensive model of calcium release based upon a stochastic generalization of the Fire-Diffuse-Fire (FDF) threshold model. Numerical simulations of the model in one and two dimensions (with stores arranged on both regular and disordered lattices) illustrate that stochastic calcium release leads to the spontaneous production of calcium sparks that may merge to form saltatory waves. Illustrations of spreading circular waves, spirals and more irregular waves are presented. Furthermore, receptor noise is shown to generate a form of array enhanced coherence resonance whereby all calcium stores release periodically and simultaneously.
Resumo:
In this paper we establish, from extensive numerical experiments, that the two dimensional stochastic fire-diffuse-fire model belongs to the directed percolation universality class. This model is an idealized model of intracellular calcium release that retains the both the discrete nature of calcium stores and the stochastic nature of release. It is formed from an array of noisy threshold elements that are coupled only by a diffusing signal. The model supports spontaneous release events that can merge to form spreading circular and spiral waves of activity. The critical level of noise required for the system to exhibit a non-equilibrium phase-transition between propagating and non-propagating waves is obtained by an examination of the \textit{local slope} $\delta(t)$ of the survival probability, $\Pi(t) \propto \exp(- \delta(t))$, for a wave to propagate for a time $t$.