891 resultados para Difference Equations with Maxima
Resumo:
Core top samples from Atlantic (Little Bahama Banks (LBB)) and Pacific (Hawaii and Indonesia) depth transects have been analyzed in order to assess the influence of bottom water temperature (BWT) and aragonite saturation levels on Mg/Ca and Sr/Ca ratios in the aragonitic benthic foraminifer Hoeglundina elegans. Both the Mg/Ca and Sr/Ca ratios in H. elegans tests show a general decrease with increasing water depth. Although at each site the decreasing trends are consistent with the in situ temperature profile, Mg/Ca and Sr/Ca ratios in LBB are substantially higher than in Indonesia and Hawaii at comparable water depths with a greater difference observed with increasing water depth. Because we find no significant difference between results obtained on "live" and "dead" specimens, we propose that these differences are due to primary effects on the metal uptake during test formation. Evaluation of the water column properties at each site suggests that in situ CO3 ion concentrations play an important role in determining the H. elegans Mg/Ca and Sr/Ca ratios. The CO3 ion effect is limited, however, only to aragonite saturation levels ([DeltaCO3]aragonite) below 15 µmol/kg. Above this level, temperature exerts a dominant effect. Accordingly, we propose that Mg/Ca and Sr/Ca in H. elegans tests can be used to reconstruct thermocline temperatures only in waters oversaturated with respect to the mineral aragonite using the following relationships: Mg/Ca = (0.034 ± 0.002)BWT + (0.96 ± 0.03) and Sr/Ca = (0.060 ± 0.002)BWT + (1.53 ± 0.03) (for [DeltaCO3]aragonite > 15 µmol/kg). The standard error associated with these equations is about ±1.1°C. Reconstruction of deeper water temperatures is complicated because in undersaturated waters, changes in Mg/Ca and Sr/Ca ratios reflect a combination of changes in [CO3] and BWT. Overall, we find that Sr/Ca, rather than Mg/Ca, in H. elegans may be a more accurate proxy for reconstructing paleotemperatures.
Resumo:
El presente Trabajo fin Fin de Máster, versa sobre una caracterización preliminar del comportamiento de un robot de tipo industrial, configurado por 4 eslabones y 4 grados de libertad, y sometido a fuerzas de mecanizado en su extremo. El entorno de trabajo planteado es el de plantas de fabricación de piezas de aleaciones de aluminio para automoción. Este tipo de componentes parte de un primer proceso de fundición que saca la pieza en bruto. Para series medias y altas, en función de las propiedades mecánicas y plásticas requeridas y los costes de producción, la inyección a alta presión (HPDC) y la fundición a baja presión (LPC) son las dos tecnologías más usadas en esta primera fase. Para inyección a alta presión, las aleaciones de aluminio más empleadas son, en designación simbólica según norma EN 1706 (entre paréntesis su designación numérica); EN AC AlSi9Cu3(Fe) (EN AC 46000) , EN AC AlSi9Cu3(Fe)(Zn) (EN AC 46500), y EN AC AlSi12Cu1(Fe) (EN AC 47100). Para baja presión, EN AC AlSi7Mg0,3 (EN AC 42100). En los 3 primeros casos, los límites de Silicio permitidos pueden superan el 10%. En el cuarto caso, es inferior al 10% por lo que, a los efectos de ser sometidas a mecanizados, las piezas fabricadas en aleaciones con Si superior al 10%, se puede considerar que son equivalentes, diferenciándolas de la cuarta. Las tolerancias geométricas y dimensionales conseguibles directamente de fundición, recogidas en normas como ISO 8062 o DIN 1688-1, establecen límites para este proceso. Fuera de esos límites, las garantías en conseguir producciones con los objetivos de ppms aceptados en la actualidad por el mercado, obligan a ir a fases posteriores de mecanizado. Aquellas geometrías que, funcionalmente, necesitan disponer de unas tolerancias geométricas y/o dimensionales definidas acorde a ISO 1101, y no capaces por este proceso inicial de moldeado a presión, deben ser procesadas en una fase posterior en células de mecanizado. En este caso, las tolerancias alcanzables para procesos de arranque de viruta se recogen en normas como ISO 2768. Las células de mecanizado se componen, por lo general, de varios centros de control numérico interrelacionados y comunicados entre sí por robots que manipulan las piezas en proceso de uno a otro. Dichos robots, disponen en su extremo de una pinza utillada para poder coger y soltar las piezas en los útiles de mecanizado, las mesas de intercambio para cambiar la pieza de posición o en utillajes de equipos de medición y prueba, o en cintas de entrada o salida. La repetibilidad es alta, de centésimas incluso, definida según norma ISO 9283. El problema es que, estos rangos de repetibilidad sólo se garantizan si no se hacen esfuerzos o éstos son despreciables (caso de mover piezas). Aunque las inercias de mover piezas a altas velocidades hacen que la trayectoria intermedia tenga poca precisión, al inicio y al final (al coger y dejar pieza, p.e.) se hacen a velocidades relativamente bajas que hacen que el efecto de las fuerzas de inercia sean menores y que permiten garantizar la repetibilidad anteriormente indicada. No ocurre así si se quitara la garra y se intercambia con un cabezal motorizado con una herramienta como broca, mandrino, plato de cuchillas, fresas frontales o tangenciales… Las fuerzas ejercidas de mecanizado generarían unos pares en las uniones tan grandes y tan variables que el control del robot no sería capaz de responder (o no está preparado, en un principio) y generaría una desviación en la trayectoria, realizada a baja velocidad, que desencadenaría en un error de posición (ver norma ISO 5458) no asumible para la funcionalidad deseada. Se podría llegar al caso de que la tolerancia alcanzada por un pretendido proceso más exacto diera una dimensión peor que la que daría el proceso de fundición, en principio con mayor variabilidad dimensional en proceso (y por ende con mayor intervalo de tolerancia garantizable). De hecho, en los CNCs, la precisión es muy elevada, (pudiéndose despreciar en la mayoría de los casos) y no es la responsable de, por ejemplo la tolerancia de posición al taladrar un agujero. Factores como, temperatura de la sala y de la pieza, calidad constructiva de los utillajes y rigidez en el amarre, error en el giro de mesas y de colocación de pieza, si lleva agujeros previos o no, si la herramienta está bien equilibrada y el cono es el adecuado para el tipo de mecanizado… influyen más. Es interesante que, un elemento no específico tan común en una planta industrial, en el entorno anteriormente descrito, como es un robot, el cual no sería necesario añadir por disponer de él ya (y por lo tanto la inversión sería muy pequeña), puede mejorar la cadena de valor disminuyendo el costo de fabricación. Y si se pudiera conjugar que ese robot destinado a tareas de manipulación, en los muchos tiempos de espera que va a disfrutar mientras el CNC arranca viruta, pudiese coger un cabezal y apoyar ese mecanizado; sería doblemente interesante. Por lo tanto, se antoja sugestivo poder conocer su comportamiento e intentar explicar qué sería necesario para llevar esto a cabo, motivo de este trabajo. La arquitectura de robot seleccionada es de tipo SCARA. La búsqueda de un robot cómodo de modelar y de analizar cinemática y dinámicamente, sin limitaciones relevantes en la multifuncionalidad de trabajos solicitados, ha llevado a esta elección, frente a otras arquitecturas como por ejemplo los robots antropomórficos de 6 grados de libertad, muy populares a nivel industrial. Este robot dispone de 3 uniones, de las cuales 2 son de tipo par de revolución (1 grado de libertad cada una) y la tercera es de tipo corredera o par cilíndrico (2 grados de libertad). La primera unión, de tipo par de revolución, sirve para unir el suelo (considerado como eslabón número 1) con el eslabón número 2. La segunda unión, también de ese tipo, une el eslabón número 2 con el eslabón número 3. Estos 2 brazos, pueden describir un movimiento horizontal, en el plano X-Y. El tercer eslabón, está unido al eslabón número 4 por la unión de tipo corredera. El movimiento que puede describir es paralelo al eje Z. El robot es de 4 grados de libertad (4 motores). En relación a los posibles trabajos que puede realizar este tipo de robot, su versatilidad abarca tanto operaciones típicas de manipulación como operaciones de arranque de viruta. Uno de los mecanizados más usuales es el taladrado, por lo cual se elige éste para su modelización y análisis. Dentro del taladrado se elegirá para acotar las fuerzas, taladrado en macizo con broca de diámetro 9 mm. El robot se ha considerado por el momento que tenga comportamiento de sólido rígido, por ser el mayor efecto esperado el de los pares en las uniones. Para modelar el robot se utiliza el método de los sistemas multicuerpos. Dentro de este método existen diversos tipos de formulaciones (p.e. Denavit-Hartenberg). D-H genera una cantidad muy grande de ecuaciones e incógnitas. Esas incógnitas son de difícil comprensión y, para cada posición, hay que detenerse a pensar qué significado tienen. Se ha optado por la formulación de coordenadas naturales. Este sistema utiliza puntos y vectores unitarios para definir la posición de los distintos cuerpos, y permite compartir, cuando es posible y se quiere, para definir los pares cinemáticos y reducir al mismo tiempo el número de variables. Las incógnitas son intuitivas, las ecuaciones de restricción muy sencillas y se reduce considerablemente el número de ecuaciones e incógnitas. Sin embargo, las coordenadas naturales “puras” tienen 2 problemas. El primero, que 2 elementos con un ángulo de 0 o 180 grados, dan lugar a puntos singulares que pueden crear problemas en las ecuaciones de restricción y por lo tanto han de evitarse. El segundo, que tampoco inciden directamente sobre la definición o el origen de los movimientos. Por lo tanto, es muy conveniente complementar esta formulación con ángulos y distancias (coordenadas relativas). Esto da lugar a las coordenadas naturales mixtas, que es la formulación final elegida para este TFM. Las coordenadas naturales mixtas no tienen el problema de los puntos singulares. Y la ventaja más importante reside en su utilidad a la hora de aplicar fuerzas motrices, momentos o evaluar errores. Al incidir sobre la incógnita origen (ángulos o distancias) controla los motores de manera directa. El algoritmo, la simulación y la obtención de resultados se ha programado mediante Matlab. Para realizar el modelo en coordenadas naturales mixtas, es preciso modelar en 2 pasos el robot a estudio. El primer modelo se basa en coordenadas naturales. Para su validación, se plantea una trayectoria definida y se analiza cinemáticamente si el robot satisface el movimiento solicitado, manteniendo su integridad como sistema multicuerpo. Se cuantifican los puntos (en este caso inicial y final) que configuran el robot. Al tratarse de sólidos rígidos, cada eslabón queda definido por sus respectivos puntos inicial y final (que son los más interesantes para la cinemática y la dinámica) y por un vector unitario no colineal a esos 2 puntos. Los vectores unitarios se colocan en los lugares en los que se tenga un eje de rotación o cuando se desee obtener información de un ángulo. No son necesarios vectores unitarios para medir distancias. Tampoco tienen por qué coincidir los grados de libertad con el número de vectores unitarios. Las longitudes de cada eslabón quedan definidas como constantes geométricas. Se establecen las restricciones que definen la naturaleza del robot y las relaciones entre los diferentes elementos y su entorno. La trayectoria se genera por una nube de puntos continua, definidos en coordenadas independientes. Cada conjunto de coordenadas independientes define, en un instante concreto, una posición y postura de robot determinada. Para conocerla, es necesario saber qué coordenadas dependientes hay en ese instante, y se obtienen resolviendo por el método de Newton-Rhapson las ecuaciones de restricción en función de las coordenadas independientes. El motivo de hacerlo así es porque las coordenadas dependientes deben satisfacer las restricciones, cosa que no ocurre con las coordenadas independientes. Cuando la validez del modelo se ha probado (primera validación), se pasa al modelo 2. El modelo número 2, incorpora a las coordenadas naturales del modelo número 1, las coordenadas relativas en forma de ángulos en los pares de revolución (3 ángulos; ϕ1, ϕ 2 y ϕ3) y distancias en los pares prismáticos (1 distancia; s). Estas coordenadas relativas pasan a ser las nuevas coordenadas independientes (sustituyendo a las coordenadas independientes cartesianas del modelo primero, que eran coordenadas naturales). Es necesario revisar si el sistema de vectores unitarios del modelo 1 es suficiente o no. Para este caso concreto, se han necesitado añadir 1 vector unitario adicional con objeto de que los ángulos queden perfectamente determinados con las correspondientes ecuaciones de producto escalar y/o vectorial. Las restricciones habrán de ser incrementadas en, al menos, 4 ecuaciones; una por cada nueva incógnita. La validación del modelo número 2, tiene 2 fases. La primera, al igual que se hizo en el modelo número 1, a través del análisis cinemático del comportamiento con una trayectoria definida. Podrían obtenerse del modelo 2 en este análisis, velocidades y aceleraciones, pero no son necesarios. Tan sólo interesan los movimientos o desplazamientos finitos. Comprobada la coherencia de movimientos (segunda validación), se pasa a analizar cinemáticamente el comportamiento con trayectorias interpoladas. El análisis cinemático con trayectorias interpoladas, trabaja con un número mínimo de 3 puntos máster. En este caso se han elegido 3; punto inicial, punto intermedio y punto final. El número de interpolaciones con el que se actúa es de 50 interpolaciones en cada tramo (cada 2 puntos máster hay un tramo), resultando un total de 100 interpolaciones. El método de interpolación utilizado es el de splines cúbicas con condición de aceleración inicial y final constantes, que genera las coordenadas independientes de los puntos interpolados de cada tramo. Las coordenadas dependientes se obtienen resolviendo las ecuaciones de restricción no lineales con el método de Newton-Rhapson. El método de las splines cúbicas es muy continuo, por lo que si se desea modelar una trayectoria en el que haya al menos 2 movimientos claramente diferenciados, es preciso hacerlo en 2 tramos y unirlos posteriormente. Sería el caso en el que alguno de los motores se desee expresamente que esté parado durante el primer movimiento y otro distinto lo esté durante el segundo movimiento (y así sucesivamente). Obtenido el movimiento, se calculan, también mediante fórmulas de diferenciación numérica, las velocidades y aceleraciones independientes. El proceso es análogo al anteriormente explicado, recordando la condición impuesta de que la aceleración en el instante t= 0 y en instante t= final, se ha tomado como 0. Las velocidades y aceleraciones dependientes se calculan resolviendo las correspondientes derivadas de las ecuaciones de restricción. Se comprueba, de nuevo, en una tercera validación del modelo, la coherencia del movimiento interpolado. La dinámica inversa calcula, para un movimiento definido -conocidas la posición, velocidad y la aceleración en cada instante de tiempo-, y conocidas las fuerzas externas que actúan (por ejemplo el peso); qué fuerzas hay que aplicar en los motores (donde hay control) para que se obtenga el citado movimiento. En la dinámica inversa, cada instante del tiempo es independiente de los demás y tiene una posición, una velocidad y una aceleración y unas fuerzas conocidas. En este caso concreto, se desean aplicar, de momento, sólo las fuerzas debidas al peso, aunque se podrían haber incorporado fuerzas de otra naturaleza si se hubiese deseado. Las posiciones, velocidades y aceleraciones, proceden del cálculo cinemático. El efecto inercial de las fuerzas tenidas en cuenta (el peso) es calculado. Como resultado final del análisis dinámico inverso, se obtienen los pares que han de ejercer los cuatro motores para replicar el movimiento prescrito con las fuerzas que estaban actuando. La cuarta validación del modelo consiste en confirmar que el movimiento obtenido por aplicar los pares obtenidos en la dinámica inversa, coinciden con el obtenido en el análisis cinemático (movimiento teórico). Para ello, es necesario acudir a la dinámica directa. La dinámica directa se encarga de calcular el movimiento del robot, resultante de aplicar unos pares en motores y unas fuerzas en el robot. Por lo tanto, el movimiento real resultante, al no haber cambiado ninguna condición de las obtenidas en la dinámica inversa (pares de motor y fuerzas inerciales debidas al peso de los eslabones) ha de ser el mismo al movimiento teórico. Siendo así, se considera que el robot está listo para trabajar. Si se introduce una fuerza exterior de mecanizado no contemplada en la dinámica inversa y se asigna en los motores los mismos pares resultantes de la resolución del problema dinámico inverso, el movimiento real obtenido no es igual al movimiento teórico. El control de lazo cerrado se basa en ir comparando el movimiento real con el deseado e introducir las correcciones necesarias para minimizar o anular las diferencias. Se aplican ganancias en forma de correcciones en posición y/o velocidad para eliminar esas diferencias. Se evalúa el error de posición como la diferencia, en cada punto, entre el movimiento teórico deseado en el análisis cinemático y el movimiento real obtenido para cada fuerza de mecanizado y una ganancia concreta. Finalmente, se mapea el error de posición obtenido para cada fuerza de mecanizado y las diferentes ganancias previstas, graficando la mejor precisión que puede dar el robot para cada operación que se le requiere, y en qué condiciones. -------------- This Master´s Thesis deals with a preliminary characterization of the behaviour for an industrial robot, configured with 4 elements and 4 degrees of freedoms, and subjected to machining forces at its end. Proposed working conditions are those typical from manufacturing plants with aluminium alloys for automotive industry. This type of components comes from a first casting process that produces rough parts. For medium and high volumes, high pressure die casting (HPDC) and low pressure die casting (LPC) are the most used technologies in this first phase. For high pressure die casting processes, most used aluminium alloys are, in simbolic designation according EN 1706 standard (between brackets, its numerical designation); EN AC AlSi9Cu3(Fe) (EN AC 46000) , EN AC AlSi9Cu3(Fe)(Zn) (EN AC 46500), y EN AC AlSi12Cu1(Fe) (EN AC 47100). For low pressure, EN AC AlSi7Mg0,3 (EN AC 42100). For the 3 first alloys, Si allowed limits can exceed 10% content. Fourth alloy has admisible limits under 10% Si. That means, from the point of view of machining, that components made of alloys with Si content above 10% can be considered as equivalent, and the fourth one must be studied separately. Geometrical and dimensional tolerances directly achievables from casting, gathered in standards such as ISO 8062 or DIN 1688-1, establish a limit for this process. Out from those limits, guarantees to achieve batches with objetive ppms currently accepted by market, force to go to subsequent machining process. Those geometries that functionally require a geometrical and/or dimensional tolerance defined according ISO 1101, not capable with initial moulding process, must be obtained afterwards in a machining phase with machining cells. In this case, tolerances achievables with cutting processes are gathered in standards such as ISO 2768. In general terms, machining cells contain several CNCs that they are interrelated and connected by robots that handle parts in process among them. Those robots have at their end a gripper in order to take/remove parts in machining fixtures, in interchange tables to modify position of part, in measurement and control tooling devices, or in entrance/exit conveyors. Repeatibility for robot is tight, even few hundredths of mm, defined according ISO 9283. Problem is like this; those repeatibilty ranks are only guaranteed when there are no stresses or they are not significant (f.e. due to only movement of parts). Although inertias due to moving parts at a high speed make that intermediate paths have little accuracy, at the beginning and at the end of trajectories (f.e, when picking part or leaving it) movement is made with very slow speeds that make lower the effect of inertias forces and allow to achieve repeatibility before mentioned. It does not happens the same if gripper is removed and it is exchanged by an spindle with a machining tool such as a drilling tool, a pcd boring tool, a face or a tangential milling cutter… Forces due to machining would create such big and variable torques in joints that control from the robot would not be able to react (or it is not prepared in principle) and would produce a deviation in working trajectory, made at a low speed, that would trigger a position error (see ISO 5458 standard) not assumable for requested function. Then it could be possible that tolerance achieved by a more exact expected process would turn out into a worst dimension than the one that could be achieved with casting process, in principle with a larger dimensional variability in process (and hence with a larger tolerance range reachable). As a matter of fact, accuracy is very tight in CNC, (its influence can be ignored in most cases) and it is not the responsible of, for example position tolerance when drilling a hole. Factors as, room and part temperature, manufacturing quality of machining fixtures, stiffness at clamping system, rotating error in 4th axis and part positioning error, if there are previous holes, if machining tool is properly balanced, if shank is suitable for that machining type… have more influence. It is interesting to know that, a non specific element as common, at a manufacturing plant in the enviroment above described, as a robot (not needed to be added, therefore with an additional minimum investment), can improve value chain decreasing manufacturing costs. And when it would be possible to combine that the robot dedicated to handling works could support CNCs´ works in its many waiting time while CNCs cut, and could take an spindle and help to cut; it would be double interesting. So according to all this, it would be interesting to be able to know its behaviour and try to explain what would be necessary to make this possible, reason of this work. Selected robot architecture is SCARA type. The search for a robot easy to be modeled and kinematically and dinamically analyzed, without significant limits in the multifunctionality of requested operations, has lead to this choice. Due to that, other very popular architectures in the industry, f.e. 6 DOFs anthropomorphic robots, have been discarded. This robot has 3 joints, 2 of them are revolute joints (1 DOF each one) and the third one is a cylindrical joint (2 DOFs). The first joint, a revolute one, is used to join floor (body 1) with body 2. The second one, a revolute joint too, joins body 2 with body 3. These 2 bodies can move horizontally in X-Y plane. Body 3 is linked to body 4 with a cylindrical joint. Movement that can be made is paralell to Z axis. The robt has 4 degrees of freedom (4 motors). Regarding potential works that this type of robot can make, its versatility covers either typical handling operations or cutting operations. One of the most common machinings is to drill. That is the reason why it has been chosen for the model and analysis. Within drilling, in order to enclose spectrum force, a typical solid drilling with 9 mm diameter. The robot is considered, at the moment, to have a behaviour as rigid body, as biggest expected influence is the one due to torques at joints. In order to modelize robot, it is used multibodies system method. There are under this heading different sorts of formulations (f.e. Denavit-Hartenberg). D-H creates a great amount of equations and unknown quantities. Those unknown quatities are of a difficult understanding and, for each position, one must stop to think about which meaning they have. The choice made is therefore one of formulation in natural coordinates. This system uses points and unit vectors to define position of each different elements, and allow to share, when it is possible and wished, to define kinematic torques and reduce number of variables at the same time. Unknown quantities are intuitive, constrain equations are easy and number of equations and variables are strongly reduced. However, “pure” natural coordinates suffer 2 problems. The first one is that 2 elements with an angle of 0° or 180°, give rise to singular positions that can create problems in constrain equations and therefore they must be avoided. The second problem is that they do not work directly over the definition or the origin of movements. Given that, it is highly recommended to complement this formulation with angles and distances (relative coordinates). This leads to mixed natural coordinates, and they are the final formulation chosen for this MTh. Mixed natural coordinates have not the problem of singular positions. And the most important advantage lies in their usefulness when applying driving forces, torques or evaluating errors. As they influence directly over origin variable (angles or distances), they control motors directly. The algorithm, simulation and obtaining of results has been programmed with Matlab. To design the model in mixed natural coordinates, it is necessary to model the robot to be studied in 2 steps. The first model is based in natural coordinates. To validate it, it is raised a defined trajectory and it is kinematically analyzed if robot fulfils requested movement, keeping its integrity as multibody system. The points (in this case starting and ending points) that configure the robot are quantified. As the elements are considered as rigid bodies, each of them is defined by its respectively starting and ending point (those points are the most interesting ones from the point of view of kinematics and dynamics) and by a non-colinear unit vector to those points. Unit vectors are placed where there is a rotating axis or when it is needed information of an angle. Unit vectors are not needed to measure distances. Neither DOFs must coincide with the number of unit vectors. Lengths of each arm are defined as geometrical constants. The constrains that define the nature of the robot and relationships among different elements and its enviroment are set. Path is generated by a cloud of continuous points, defined in independent coordinates. Each group of independent coordinates define, in an specific instant, a defined position and posture for the robot. In order to know it, it is needed to know which dependent coordinates there are in that instant, and they are obtained solving the constraint equations with Newton-Rhapson method according to independent coordinates. The reason to make it like this is because dependent coordinates must meet constraints, and this is not the case with independent coordinates. When suitability of model is checked (first approval), it is given next step to model 2. Model 2 adds to natural coordinates from model 1, the relative coordinates in the shape of angles in revoluting torques (3 angles; ϕ1, ϕ 2 and ϕ3) and distances in prismatic torques (1 distance; s). These relative coordinates become the new independent coordinates (replacing to cartesian independent coordinates from model 1, that they were natural coordinates). It is needed to review if unit vector system from model 1 is enough or not . For this specific case, it was necessary to add 1 additional unit vector to define perfectly angles with their related equations of dot and/or cross product. Constrains must be increased in, at least, 4 equations; one per each new variable. The approval of model 2 has two phases. The first one, same as made with model 1, through kinematic analysis of behaviour with a defined path. During this analysis, it could be obtained from model 2, velocities and accelerations, but they are not needed. They are only interesting movements and finite displacements. Once that the consistence of movements has been checked (second approval), it comes when the behaviour with interpolated trajectories must be kinematically analyzed. Kinematic analysis with interpolated trajectories work with a minimum number of 3 master points. In this case, 3 points have been chosen; starting point, middle point and ending point. The number of interpolations has been of 50 ones in each strecht (each 2 master points there is an strecht), turning into a total of 100 interpolations. The interpolation method used is the cubic splines one with condition of constant acceleration both at the starting and at the ending point. This method creates the independent coordinates of interpolated points of each strecht. The dependent coordinates are achieved solving the non-linear constrain equations with Newton-Rhapson method. The method of cubic splines is very continuous, therefore when it is needed to design a trajectory in which there are at least 2 movements clearly differents, it is required to make it in 2 steps and join them later. That would be the case when any of the motors would keep stopped during the first movement, and another different motor would remain stopped during the second movement (and so on). Once that movement is obtained, they are calculated, also with numerical differenciation formulas, the independent velocities and accelerations. This process is analogous to the one before explained, reminding condition that acceleration when t=0 and t=end are 0. Dependent velocities and accelerations are calculated solving related derivatives of constrain equations. In a third approval of the model it is checked, again, consistence of interpolated movement. Inverse dynamics calculates, for a defined movement –knowing position, velocity and acceleration in each instant of time-, and knowing external forces that act (f.e. weights); which forces must be applied in motors (where there is control) in order to obtain requested movement. In inverse dynamics, each instant of time is independent of the others and it has a position, a velocity, an acceleration and known forces. In this specific case, it is intended to apply, at the moment, only forces due to the weight, though forces of another nature could have been added if it would have been preferred. The positions, velocities and accelerations, come from kinematic calculation. The inertial effect of forces taken into account (weight) is calculated. As final result of the inverse dynamic analysis, the are obtained torques that the 4 motors must apply to repeat requested movement with the forces that were acting. The fourth approval of the model consists on confirming that the achieved movement due to the use of the torques obtained in the inverse dynamics, are in accordance with movements from kinematic analysis (theoretical movement). For this, it is necessary to work with direct dynamics. Direct dynamic is in charge of calculating the movements of robot that results from applying torques at motors and forces at the robot. Therefore, the resultant real movement, as there was no change in any condition of the ones obtained at the inverse dynamics (motor torques and inertial forces due to weight of elements) must be the same than theoretical movement. When these results are achieved, it is considered that robot is ready to work. When a machining external force is introduced and it was not taken into account before during the inverse dynamics, and torques at motors considered are the ones of the inverse dynamics, the real movement obtained is not the same than the theoretical movement. Closed loop control is based on comparing real movement with expected movement and introducing required corrrections to minimize or cancel differences. They are applied gains in the way of corrections for position and/or tolerance to remove those differences. Position error is evaluated as the difference, in each point, between theoretical movemment (calculated in the kinematic analysis) and the real movement achieved for each machining force and for an specific gain. Finally, the position error obtained for each machining force and gains are mapped, giving a chart with the best accuracy that the robot can give for each operation that has been requested and which conditions must be provided.
Resumo:
Numerical simulations of flow surrounding a synthetic jet actuating device are presented. By modifying a dynamic mesh technique available in OpenFoam-a well-documented open-source solver for fluid dynamics, detailed computations of the sinusoidal motion of the synthetic jet diaphragm were possible. Numerical solutions were obtained by solving the two dimensional incompressible viscous N-S equations, with the use of a second order implicit time marching scheme and a central finite volume method for spatial discretization in both streamwise and crossflow directions. A systematic parametric study is reported here, in which the external Reynolds number, the diaphragm amplitude and frequency, and the slot dimensions are varied.
Resumo:
Las leguminosas grano presentan un perfil nutricional de gran interés para alimentación de ganado porcino, debido principalmente a su elevado contenido proteico. Sin embargo, la presencia de factores antinutritivos (FAN), que según el género difieren en calidad y cantidad, condiciona la absorción de la proteína, el nutriente más valorado. El objetivo de esta Tesis Doctoral ha sido el estudio del efecto de los principales FAN de guisante y alberjón sobre el rendimiento productivo, de canal y de piezas nobles, cuando sustituyen a la soja, parcial o totalmente, durante la fase estárter y el periodo de engorde de cerdos grasos. Con este motivo se llevaron a cabo 4 ensayos con machos castrados y la misma línea genética: híbrido Duroc x (Landrace x Large white). En el ensayo 1, se estudió la influencia de distintos niveles de inhibidores de proteasas (IP) en el pienso sobre la productividad de lechones durante la fase estárter (40 a 61 días de edad). Para ello, se utilizaron tres variedades de guisantes de invierno que contenían diferentes cantidades de IP, tanto de tripsina (IT) como de quimotripsina (IQ) [unidades de tripsina inhibida/mg (UTI), unidades de quimotripsina inhibida/mg (UQI): 9,87- 10,16, 5,75-8,62 y 12,55-15,75, para guisantes Cartouche, Iceberg y Luna, respectivamente] más elevadas que en la harina de soja 47 (HnaS) y en la soja extrusionada (SE) (UTI/mg - UQI/mg: 0,61-3,56 y 2,36-4,65, para HnaS y SE, respectivamente). El diseño experimental fue al azar, con cuatro tratamientos dietéticos que diferían en las fuentes proteicas y en la cantidad de IP, enfrentando un pienso control de soja a otros tres piensos con guisantes de invierno de las variedades indicadas, que sustituían parcialmente a la soja. Cada tratamiento se replicó cuatro veces, siendo la celda con 6 lechones la unidad experimental. Los animales que consumieron el pienso con guisante Cartouche tuvieron más ganancia media diaria (GMD) que el resto (P < 0,001) con el mismo consumo medio diario (CMD) e índice de conversión (IC). No hubo diferencias significativas entre los animales del pienso control y los que consumieron piensos con guisantes Iceberg y Luna. En el ensayo 2 la leguminosa objeto de estudio fue el alberjón y su FAN el dipéptido _Glutamyl-S-Ethenyl-Cysteine (GEC). El diseño y el periodo experimental fueron los mismos que en el ensayo 1, con cuatro dietas que variaban en el porcentaje de alberjones: 0%, 5%, 15% y 25%, y de GEC (1,54% del grano). Los lechones que consumieron el pienso con 5% tuvieron un CMD y GMD más elevado (P < 0,001), con el mismo IC que los animales pertenecientes al tratamiento 0%. Los índices productivos empeoraron significativamente y de manera progresiva al aumentar el porcentaje de alberjones (15 y 25%). Se obtuvieron ecuaciones de regresión con estructura polinomial que fueron significativas tanto para el nivel de alberjón como para la cantidad de GEC presente en el pienso. El ensayo 3 se efectuó durante el periodo de engorde, sustituyendo por completo la soja a partir de los 84 días de edad con las tres variedades de guisantes de invierno, observando el efecto sobre el rendimiento productivo, de canal y piezas nobles. El diseño, en bloques completos al azar, tuvo cuatro tratamientos según el guisante presente en el pienso y, por lo tanto, los niveles de IP: Control-soja, Cartouche, Iceberg y Luna, con 12 réplicas de 4 cerdos por tratamiento. De 84 a 108 días de edad los animales que consumieron los piensos Control-soja e Iceberg, tuvieron el mismo CMD y GMD, empeorando en los cerdos alimentados con Luna y Cartouche (P < 0,05). El IC fue igual en los tratamientos Control-soja e Iceberg, ocupando una posición intermedia en Cartouche y peor en los cerdos del pienso Luna (P < 0,001). De 109 a 127 días de edad la GMD y el IC fueron iguales, con un CMD más elevado en Control-soja e Iceberg que en los cerdos que consumieron Cartouche y Luna (P < 0,05). No hubo diferencias significativas durante el acabado (128 a 167 días de edad). Globalmente el CMD y GMD fueron más elevados en los cerdos que comieron los piensos Iceberg y Control-soja, empeorando por igual en los que comieron Cartouche y Luna (P < 0,05); el IC fue el mismo en todos los tratamientos. No se observaron diferencias en los datos relacionados con peso y rendimiento de canal y piezas nobles (jamón, paleta y chuletero), ni del contenido de grasa intramuscular en el lomo y proporción de ácidos grasos principales (C16:0, C18:0, C18:1n-9) en la grasa subcutánea. En el ensayo 4, realizado durante el periodo de engorde (60 a 171 días de edad), se valoró el efecto de dietas con distintos niveles de alberjones, y en consecuencia de su factor antinutritivo el dipéptido GEC, sobre el rendimiento productivo y la calidad de la canal y piezas nobles. El diseño fue en cuatro bloques completos al azar, con cuatro tratamientos según el porcentaje de inclusión de alberjón en el pienso: 0%, 5%, 15% y 25%, con 12 réplicas por tratamiento y cuatro cerdos en cada una de ellas. El tratamiento con 5% mejoró la GMD al final de la fase de cebo (152 días de vida) y, junto con el 0%, presentaron los resultados más favorables de peso e IC al final del ensayo (171 días de vida). Del mismo modo, el peso y rendimiento de canal fueron más elevados en los cerdos alimentados con los tratamientos 0% y 5% (P < 0,001). Piensos con el 15 y 25% de alberjones empeoraron los resultados productivos, así como el rendimiento y peso de canal. Sucedió lo mismo con el peso de las piezas nobles (jamón, paleta y chuletero), significativamente superior en 0% y 5% frente a 15% y 25%, siendo los cerdos que consumieron este último pienso los peores. Por el contrario el rendimiento de jamón y chuletero fue más elevado en los cerdos de los tratamientos 25% y 15% que en los que consumieron los piensos con 5% y 0% (P < 0,001); en el rendimiento de paletas se invirtieron los resultados, siendo mayores en los animales de los tratamientos 0% y 5% (P < 0,001). Se obtuvieron ecuaciones de regresión polinomial, para estimar las cantidades de inclusión de alberjones y de GEC más favorables desde el punto de vista productivo, así como los contrastes ortogonales entre los distintos tratamientos. ABSTRACT The grain legumes have a nutritional profile of great interest to feed pigs, mainly due to high protein content. However, the presence of antinutritional factors (ANF), which differ in quality and quantity according to gender, hinder the absorption of the protein, the most valuable nutrient. The aim of this thesis was to study the effect of the main ANF of pea and narbon vetch (NV) on productive performance, of the carcass and main lean cuts, when replacing soybean, partially or totally, during the starter phase and the fattening period of heavy pigs. For this reason were carried four trials with barrows and the same genetic line: Duroc hybrid x (Landrace x Large white). In trial 1, was studied the influence of different levels of protease inhibitors (PI) in the diet over productivity of piglets during the starter phase (40-61 days of age). For this, were used three varieties of winter peas containing different amounts of PI, both trypsin (TI) and chymotrypsin (CI) [inhibited units/mg trypsin (TIU), inhibited units/mg chymotrypsin (CIU): 9.87 - 10.16, 5.75 - 8.62 and 12.55 - 15.75, for peas Cartouche, Iceberg and Luna, respectively] higher than in soybean meal 47 (SBM) and soybeans extruded (SBE) (TIU/mg - CIU/mg: 0.61 - 3.56 and 2.36 - 4.65 for SBM and SBE, respectively). The design was randomized with four dietary treatments differing in protein sources and the amount of PI, with a control diet of soybean and three with different varieties of winter peas: Cartouche, Iceberg and Luna, which partially replace soybean. Each treatment was replicated four times, being the pen with 6 piglets the experimental unit. Pigs that ate the feed with pea Cartouche had better growth (ADG) than the rest (P < 0.001), with the same average daily feed intake (ADFI) and feed conversion ratio (FCR). There were no significant differences between piglets fed with control diet and those fed Iceberg and Luna diets. In trial 2 the legume under study was the NV and your ANF the dipeptide _Glutamyl FAN-S-Ethenyl-Cysteine (GEC). The experimental period and the design were the same as in trial 1, with four diets with different percentage of NV: 0%, 5%, 15% and 25%, and from GEC (1.52% of the grain). The piglets that consumed the feed containing 5% had higher ADG and ADFI (P < 0.05), with the same FCR that pigs belonging to the 0% treatment. Production rates worsened progressively with increasing percentage of NV (15 and 25%). Were obtained regression equations with polynomial structure that were significant for NV percentage and amount of GEC present in the feed. The test 3 was carried out during the fattening period, completely replace soy from 84 days of age with three varieties of winter peas, observing the effect on the yield, carcass and main lean cuts. The design, randomized complete blocks, had four treatments with different levels of PI: Control-soy, Cartouche, Iceberg and Luna, with 12 replicates of 4 pigs per treatment. From 84 to 108 days of age the pigs fed with Control-soy and Iceberg feed, had the same ADFI and ADG, worsening in pigs fed with Luna and Cartouche (P < 0.05). The FCR was similar in diets Control-soy and Iceberg, occupying an intermediate position in Cartouche and worse in pigs fed with Luna (P < 0.001). From 109-127 days of age the ADG and FCR were equal, with higher ADFI in pigs fed with Control-soy and Iceberg, regarding pigs fed with Cartouche and Luna (P < 0.05). There was no difference in the finishing phase (128-167 days of age). In global period, the ADFI and ADG were higher in pigs that ate Control-soy and Iceberg, and worse in those who ate Cartouche and Luna. The FCR was the same in all treatments. No significant differences were observed in the data related to weight and carcass yield, main lean cuts (ham, shoulder and loin chop) and intramuscular fat loin content and major fatty acids proportion (C16:0, C18:0, C18:1n-9) of subcutaneous fat. In experiment 4, made during the fattening period (60-171 days of age), was assessed the effect of diets with different levels of NV, and consequently of GEC, in the performance and quality of carcass and main lean cuts. There was a completely randomized design with four dietary treatments differing in percentage of NV: 0%, 5%, 15% and 25%, with 12 replicates per treatment and four pigs each. Treatment with 5% improved the ADG at the end of the fattening phase (152 days of age) and, together with 0%, showed the most favorable body weight and FCR at the end of the trial (171 days of age). Similarly, the weight and performance of carcass were higher for pigs fed with diets 0% and 5% (P < 0.05). Diets with 15 and 25% worsened the productive and carcass results. The weight of the main lean cuts (ham, shoulder and loin chop) was significantly higher in 0% and 5% vs 15% and 25%.The diet 25% was the worst of all. By contrast the performance of ham and loin chop was higher in pigs fed with diets 25% and 15%, that those who ate diets with 5% and 0% (P < 0.001); the results of shoulder performance were reversed, being greater in pigs feed with diets 0% and 5% (P < 0.001). Polynomial regression equations were obtained to estimate the percentage of NV and GEC more favorable from the point of view of production, and orthogonal contrasts between treatments.
Resumo:
Polyethylene chains in the amorphous region between two crystalline lamellae M unit apart are modeled as random walks with one-step memory on a cubic lattice between two absorbing boundaries. These walks avoid the two preceding steps, though they are not true self-avoiding walks. Systems of difference equations are introduced to calculate the statistics of the restricted random walks. They yield that the fraction of loops is (2M - 2)/(2M + 1), the fraction of ties 3/(2M + 1), the average length of loops 2M - 0.5, the average length of ties 2/3M2 + 2/3M - 4/3, the average length of walks equals 3M - 3, the variance of the loop length 16/15M3 + O(M2), the variance of the tie length 28/45M4 + O(M3), and the variance of the walk length 2M3 + O(M2).
Resumo:
Background To evaluate the intraocular lens (IOL) position by analyzing the postoperative axis of internal astigmatism as well as the higher-order aberration (HOA) profile after cataract surgery following the implantation of a diffractive multifocal toric IOL. Methods Prospective study including 51 eyes with corneal astigmatism of 1.25D or higher of 29 patients with ages ranging between 20 and 61 years old. All cases underwent uneventful cataract surgery with implantation of the AT LISA 909 M toric IOL (Zeiss). Visual, refractive and corneal topograpy changes were evaluated during a 12-month follow-up. In addition, the axis of internal astigmatism as well as ocular, corneal, and internal HOA (5-mm pupil) were evaluated postoperatively by means of an integrated aberrometer (OPD Scan II, Nidek). Results A significant improvement in uncorrected distance and near visual acuities (p < 0.01) was found, which was consistent with a significant correction of manifest astigmatism (p < 0.01). No significant changes were observed in corneal astigmatism (p = 0.32). With regard to IOL alignment, the difference between the axes of postoperative internal and preoperative corneal astigmatisms was close to perpendicularity (12 months, 87.16° ± 7.14), without significant changes during the first 6 months (p ≥ 0.46). Small but significant changes were detected afterwards (p = 0.01). Additionally, this angular difference correlated with the postoperative magnitude of manifest cylinder (r = 0.31, p = 0.03). Minimal contribution of intraocular optics to the global magnitude of HOA was observed. Conclusions The diffractive multifocal toric IOL evaluated is able to provide a predictable astigmatic correction with apparent excellent levels of optical quality during the first year after implantation.
Resumo:
The focus of the present work is the well-known feature of the probability density function (PDF) transport equations in turbulent flows-the inverse parabolicity of the equations. While it is quite common in fluid mechanics to interpret equations with direct (forward-time) parabolicity as diffusive (or as a combination of diffusion, convection and reaction), the possibility of a similar interpretation for equations with inverse parabolicity is not clear. According to Einstein's point of view, a diffusion process is associated with the random walk of some physical or imaginary particles, which can be modelled by a Markov diffusion process. In the present paper it is shown that the Markov diffusion process directly associated with the PDF equation represents a reasonable model for dealing with the PDFs of scalars but it significantly underestimates the diffusion rate required to simulate turbulent dispersion when the velocity components are considered.
Resumo:
A formalism for describing the dynamics of Genetic Algorithms (GAs) using method s from statistical mechanics is applied to the problem of generalization in a perceptron with binary weights. The dynamics are solved for the case where a new batch of training patterns is presented to each population member each generation, which considerably simplifies the calculation. The theory is shown to agree closely to simulations of a real GA averaged over many runs, accurately predicting the mean best solution found. For weak selection and large problem size the difference equations describing the dynamics can be expressed analytically and we find that the effects of noise due to the finite size of each training batch can be removed by increasing the population size appropriately. If this population resizing is used, one can deduce the most computationally efficient size of training batch each generation. For independent patterns this choice also gives the minimum total number of training patterns used. Although using independent patterns is a very inefficient use of training patterns in general, this work may also prove useful for determining the optimum batch size in the case where patterns are recycled.
Resumo:
A formalism recently introduced by Prugel-Bennett and Shapiro uses the methods of statistical mechanics to model the dynamics of genetic algorithms. To be of more general interest than the test cases they consider. In this paper, the technique is applied to the subset sum problem, which is a combinatorial optimization problem with a strongly non-linear energy (fitness) function and many local minima under single spin flip dynamics. It is a problem which exhibits an interesting dynamics, reminiscent of stabilizing selection in population biology. The dynamics are solved under certain simplifying assumptions and are reduced to a set of difference equations for a small number of relevant quantities. The quantities used are the population's cumulants, which describe its shape, and the mean correlation within the population, which measures the microscopic similarity of population members. Including the mean correlation allows a better description of the population than the cumulants alone would provide and represents a new and important extension of the technique. The formalism includes finite population effects and describes problems of realistic size. The theory is shown to agree closely to simulations of a real genetic algorithm and the mean best energy is accurately predicted.
Resumo:
This thesis addresses the kineto-elastodynamic analysis of a four-bar mechanism running at high-speed where all links are assumed to be flexible. First, the mechanism, at static configurations, is considered as structure. Two methods are used to model the system, namely the finite element method (FEM) and the dynamic stiffness method. The natural frequencies and mode shapes at different positions from both methods are calculated and compared. The FEM is used to model the mechanism running at high-speed. The governing equations of motion are derived using Hamilton's principle. The equations obtained are a set of stiff ordinary differential equations with periodic coefficients. A model is developed whereby the FEM and the dynamic stiffness method are used conjointly to provide high-precision results with only one element per link. The principal concern of the mechanism designer is the behaviour of the mechanism at steady-state. Few algorithms have been developed to deliver the steady-state solution without resorting to costly time marching simulation. In this study two algorithms are developed to overcome the limitations of the existing algorithms. The superiority of the new algorithms is demonstrated. The notion of critical speeds is clarified and a distinction is drawn between "critical speeds", where stresses are at a local maximum, and "unstable bands" where the mechanism deflections will grow boundlessly. Floquet theory is used to assess the stability of the system. A simple method to locate the critical speeds is derived. It is shown that the critical speeds of the mechanism coincide with the local maxima of the eigenvalues of the transition matrix with respect to the rotational speed of the mechanism.
Resumo:
The present paper investigates the existence of integral manifolds for impulsive differential equations with variable perturbations. By means of piecewise continuous functions which are generalizations of the classical Lyapunov’s functions, sufficient conditions for the existence of integral manifolds of such equations are found.
Resumo:
In this paper we present a spectral criterion for existence of mean-periodic solutions of retarded functional differential equations with a time-independent main part.
Resumo:
Mathematics Subject Classification: 26A33, 34A25, 45D05, 45E10
Resumo:
Mathematics Subject Classi¯cation 2010: 26A33, 65D25, 65M06, 65Z05.
Resumo:
MSC 2010: 34A37, 34B15, 26A33, 34C25, 34K37