784 resultados para Dice recognition
Resumo:
The traditional role of justice is to arbitrate where the good will of people is not enough, if even present, to settle a dispute between the concerned parties. It is a procedural approach that assumes a fractured relationship between those involved. Recognition, at first glance, would not seem to mirror these aspects of justice. Yet recognition is very much a subject of justice these days. The aim of this paper is to question the applicability of justice to the practice of recognition. The methodological orientation of this paper is a Kantian-style critique of the institution of justice, highlighting the limits of its reach and the dangers of overextension. The critique unfolds in the following three steps: 1) There is an immediate appeal to justice as a practice of recognition through its commitment to universality. This allure is shown to be deceptive in providing no prescription for the actual practice of this universality. 2) The interventionist character of justice is designed to address divided relationships. If recognition is only given expression through this channel, then we can only assume division as our starting ground. 3) The outcome of justice in respect to recognition is identification. This identification is left vulnerable to misrecognition itself, creating a cycle of injustice that demands recognition from anew. It seems to be well accepted that recognition is essentjustice, but less clear how to do justice to recognition. This paper is an effort in clarification.
Resumo:
Question : Cette thèse comporte deux articles portant sur l’étude d’expressions faciales émotionnelles. Le processus de développement d’une nouvelle banque de stimuli émotionnels fait l’objet du premier article, alors que le deuxième article utilise cette banque pour étudier l’effet de l’anxiété de trait sur la reconnaissance des expressions statiques. Méthodes : Un total de 1088 clips émotionnels (34 acteurs X 8 émotions X 4 exemplaire) ont été alignés spatialement et temporellement de sorte que les yeux et le nez de chaque acteur occupent le même endroit dans toutes les vidéos. Les vidéos sont toutes d’une durée de 500ms et contiennent l’Apex de l’expression. La banque d’expressions statiques fut créée à partir de la dernière image des clips. Les stimuli ont été soumis à un processus de validation rigoureux. Dans la deuxième étude, les expressions statiques sont utilisées conjointement avec la méthode Bubbles dans le but d’étudier la reconnaissance des émotions chez des participants anxieux. Résultats : Dans la première étude, les meilleurs stimuli ont été sélectionnés [2 (statique & dynamique) X 8 (expressions) X 10 (acteurs)] et forment la banque d’expressions STOIC. Dans la deuxième étude, il est démontré que les individus présentant de l'anxiété de trait utilisent préférentiellement les basses fréquences spatiales de la région buccale du visage et ont une meilleure reconnaissance des expressions de peur. Discussion : La banque d’expressions faciales STOIC comporte des caractéristiques uniques qui font qu’elle se démarque des autres. Elle peut être téléchargée gratuitement, elle contient des vidéos naturelles et tous les stimuli ont été alignés, ce qui fait d’elle un outil de choix pour la communauté scientifique et les cliniciens. Les stimuli statiques de STOIC furent utilisés pour franchir une première étape dans la recherche sur la perception des émotions chez des individus présentant de l’anxiété de trait. Nous croyons que l’utilisation des basses fréquences est à la base des meilleures performances de ces individus, et que l’utilisation de ce type d’information visuelle désambigüise les expressions de peur et de surprise. Nous pensons également que c’est la névrose (chevauchement entre l'anxiété et la dépression), et non l’anxiété même qui est associée à de meilleures performances en reconnaissance d’expressions faciales de la peur. L’utilisation d’instruments mesurant ce concept devrait être envisagée dans de futures études.
Resumo:
1er Prix du concours d'initiation à la recherche organisé par le Regroupement Droit et Changements. La Loi sur les Indiens institutionnalise toujours de nombreuses facettes de ce qu’est être « Indien » pour beaucoup d’individus au Canada et un changement de perspective doit être opéré. Cet essai puise dans la pensée du philosophe Theodor Adorno pour réfléchir aux tentatives de reconnaissance juridique par le Canada des individus et sociétés autochtones en vertu de l’article 35 de la Constitution. L’auteur présente la théorie de la dialectique négative d’Adorno de 1966 sur le rapport à l’altérité, à partir de l’analyse de la professeure Drucilla Cornell, afin d’identifier ce que sa pensée prescrit pour établir des rapports non-oppressants entre Autochtones et non-Autochtones et leurs gouvernements aujourd’hui. La dialectique négative est particulièrement appropriée à la tentative de reconnaissance juridique de l’existence des sociétés autochtones par le Canada, du fait de leur statut marginalisé et de leurs revendications à la spécificité. Après avoir établi un tel cadre, l’auteur souligne que des précédentes tentatives de reconnaissances se sont soldées par des échecs en raison des désaccords au niveau des valeurs impliquées et des concepts utilisés auxquels elles ont donné lieu. Le processus de signature des traités numérotés de 1871-1921 est employé comme illustration en raison de son résultat souvent décrit aujourd’hui comme coercitif et injuste en dépit du discours de négociation sur un pied d’égalité l’ayant accompagné. Les critiques contemporaines de la politique en vigueur de mise en œuvre de l’autonomie gouvernementale autochtone par des accords négociés sont également présentées, afin d’illustrer que des désaccords quant à la manière dont l’État canadien entend reconnaître les peuples autochtones persistent à ce jour. L’auteur ajoute que, du point de vue de la dialectique négative, de tels désaccords doivent nécessairement être résolus pour que des rapports moins oppressifs puissent être établis. L’auteur conclut que la dialectique négative impose à la fois de se considérer soi-même (« je est un autre ») et de considérer l’autre comme au-delà des limites de sa propre pensée. La Cour suprême a déjà reconnu que la seule perspective de la common law n’est pas suffisante pour parvenir à une réconciliation des souverainetés des Autochtones et de la Couronne en vertu de la Constitution. Le concept de common law de fiduciaire présente un véhicule juridique intéressant pour une reconfiguration plus profonde par le gouvernement canadien de son rapport avec les peuples autochtones, priorisant processus plutôt que résultats et relations plutôt que certitude. Il doit toutefois être gardé à l’esprit que la reconnaissance de ces peuples par l’État canadien par le prisme de la pensée d’Adorno présente non seulement le défi d’inclure de nouvelles perspectives, mais également de remettre en cause les prémisses fondamentales à partir desquelles on considère la communauté canadienne en général.
Resumo:
Les humains communiquent via différents types de canaux: les mots, la voix, les gestes du corps, des émotions, etc. Pour cette raison, un ordinateur doit percevoir ces divers canaux de communication pour pouvoir interagir intelligemment avec les humains, par exemple en faisant usage de microphones et de webcams. Dans cette thèse, nous nous intéressons à déterminer les émotions humaines à partir d’images ou de vidéo de visages afin d’ensuite utiliser ces informations dans différents domaines d’applications. Ce mémoire débute par une brève introduction à l'apprentissage machine en s’attardant aux modèles et algorithmes que nous avons utilisés tels que les perceptrons multicouches, réseaux de neurones à convolution et autoencodeurs. Elle présente ensuite les résultats de l'application de ces modèles sur plusieurs ensembles de données d'expressions et émotions faciales. Nous nous concentrons sur l'étude des différents types d’autoencodeurs (autoencodeur débruitant, autoencodeur contractant, etc) afin de révéler certaines de leurs limitations, comme la possibilité d'obtenir de la coadaptation entre les filtres ou encore d’obtenir une courbe spectrale trop lisse, et étudions de nouvelles idées pour répondre à ces problèmes. Nous proposons également une nouvelle approche pour surmonter une limite des autoencodeurs traditionnellement entrainés de façon purement non-supervisée, c'est-à-dire sans utiliser aucune connaissance de la tâche que nous voulons finalement résoudre (comme la prévision des étiquettes de classe) en développant un nouveau critère d'apprentissage semi-supervisé qui exploite un faible nombre de données étiquetées en combinaison avec une grande quantité de données non-étiquetées afin d'apprendre une représentation adaptée à la tâche de classification, et d'obtenir une meilleure performance de classification. Finalement, nous décrivons le fonctionnement général de notre système de détection d'émotions et proposons de nouvelles idées pouvant mener à de futurs travaux.
Resumo:
Le virus de l’hépatite C (VHC) est un virus à ARN simple brin positif (ssARN) qui se replique dans le foie. Deux cents millions de personnes sont infectées par le virus dans le monde et environ 80% d’entre elles progresseront vers un stade chronique de l’infection. Les thérapies anti-virales actuelles comme l’interféron (IFN) ou la ribavirin sont de plus en plus utilisées mais ne sont efficaces que dans la moitié des individus traités et sont souvent accompagnées d’une toxicité ou d’effets secondaires indésirables. Le système immunitaire inné est essentiel au contrôle des infections virales. Les réponses immunitaires innées sont activées suite à la reconnaissance par les Pathogen Recognition Receptors (PRRs), de motifs macromoléculaires dérivés du virus appelés Pathogen-Associated Molecular Patterns (PAMPs). Bien que l'activation du système immunitaire par l'ARN ou les protéines du VHC ait été largement étudiée, très peu de choses sont actuellement connues concernant la détection du virus par le système immunitaire inné. Et même si l’on peut très rapidement déceler des réponses immunes in vivo après infection par le VHC, l’augmentation progressive et continue de la charge virale met en évidence une incapacité du système immunitaire à contrôler l’infection virale. Une meilleure compréhension des mécanismes d’activation du système immunitaire par le VHC semble, par conséquent, essentielle au développement de stratégies antivirales plus efficaces. Dans le présent travail nous montrons, dans un modèle de cellule primaire, que le génome ARN du VHC contient des séquences riches en GU capables de stimuler spécifiquement les récepteurs de type Toll (TLR) 7 et 8. Cette stimulation a pour conséquence la maturation des cellules dendritiques plasmacytoïdes (pDCs), le production d’interféron de type I (IFN) ainsi que l’induction de chémokines et cytokines inflammatoires par les différentes types de cellules présentatrices d’antigènes (APCs). Les cytokines produites après stimulation de monocytes ou de pDCs par ces séquences ssARN virales, inhibent la production du virus de façon dépendante de l’IFN. En revanche, les cytokines produites après stimulation de cellules dendritiques myéloïdes (mDCs) ou de macrophages par ces mêmes séquences n’ont pas d’effet inhibiteur sur la production virale car les séquences ssARN virales n’induisent pas la production d’IFN par ces cellules. Les cytokines produites après stimulation des TLR 7/8 ont également pour effet de diminuer, de façon indépendante de l’IFN, l’expression du récepteur au VHC (CD81) sur la lignée cellulaire Huh7.5, ce qui pourrait avoir pour conséquence de restreindre l’infection par le VHC. Quoiqu’il en soit, même si les récepteurs au VHC comme le CD81 sont largement exprimés à la surface de différentes sous populations lymphocytaires, les DCs et les monocytes ne répondent pas aux VHC, Nos résultats indiquent que seuls les macrophages sont capables de reconnaître le VHC et de produire des cytokines inflammatoires en réponse à ce dernier. La reconnaissance du VHC par les macrophages est liée à l’expression membranaire de DC-SIGN et l’engagement des TLR 7/8 qui en résulte. Comme d’autres agonistes du TLR 7/8, le VHC stimule la production de cytokines inflammatoires (TNF-α, IL-8, IL-6 et IL-1b) mais n’induit pas la production d’interféron-beta par les macrophages. De manière attendue, la production de cytokines par des macrophages stimulés par les ligands du TLR 7/8 ou les séquences ssARN virales n’inhibent pas la réplication virale. Nos résultats mettent en évidence la capacité des séquences ssARN dérivées du VHC à stimuler les TLR 7/8 dans différentes populations de DC et à initier une réponse immunitaire innée qui aboutit à la suppression de la réplication virale de façon dépendante de l’IFN. Quoiqu’il en soit, le VHC est capable d’échapper à sa reconnaissance par les monocytes et les DCs qui ont le potentiel pour produire de l’IFN et inhiber la réplication virale après engagement des TLR 7/8. Les macrophages possèdent quant à eux la capacité de reconnaître le VHC grâce en partie à l’expression de DC-SIGN à leur surface, mais n’inhibent pas la réplication du virus car ils ne produisent pas d’IFN. L’échappement du VHC aux défenses antivirales pourrait ainsi expliquer l’échec du système immunitaire inné à contrôler l’infection par le VHC. De plus, la production de cytokines inflammatoires observée après stimulation in vitro des macrophages par le VHC suggère leur potentielle contribution dans l’inflammation que l’on retrouve chez les individus infectés par le VHC.
Resumo:
Development of organic molecules that exhibit selective interactions with different biomolecules has immense significance in biochemical and medicinal applications. In this context, our main objective has been to design a few novel functionaIized molecules that can selectively bind and recognize nucleotides and DNA in the aqueous medium through non-covalent interactions. Our strategy was to design novel cycIophane receptor systems based on the anthracene chromophore linked through different bridging moieties and spacer groups. It was proposed that such systems would have a rigid structure with well defined cavity, wherein the aromatic chromophore can undergo pi-stacking interactions with the guest molecules. The viologen and imidazolium moieties have been chosen as bridging units, since such groups, can in principle, could enhance the solubility of these derivatives in the aqueous medium as well as stabilize the inclusion complexes through electrostatic interactions.We synthesized a series of water soluble novel functionalized cyclophanes and have investigated their interactions with nucleotides, DNA and oligonucIeotides through photophysical. chiroptical, electrochemical and NMR techniques. Results indicate that these systems have favorable photophysical properties and exhibit selective interactions with ATP, GTP and DNA involving electrostatic. hydrophobic and pi-stacking interactions inside the cavity and hence can have potential use as probes in biology.
Resumo:
Design and study of molecular receptors capable of mimicking natural processes has found applications in basic research as well as in the development of potentially useful technologies. Of the various receptors reported, the cyclophanes are known to encapsulate guest molecules in their cavity utilizing various non–covalent interactions resulting in significant changes in their optical properties. This unique property of the cyclophanes has been widely exploited for the development of selective and sensitive probes for a variety of guest molecules including complex biomolecules. Further, the incorporation of metal centres into these systems added new possibilities for designing receptors such as the metallocyclophanes and transition metal complexes, which can target a large variety of Lewis basic functional groups that act as selective synthetic receptors. The ligands that form complexes with the metal ions, and are capable of further binding to Lewis-basic substrates through open coordination sites present in various biomolecules are particularly important as biomolecular receptors. In this context, we synthesized a few anthracene and acridine based metal complexes and novel metallocyclophanes and have investigated their photophysical and biomolecular recognition properties.
Effectiveness Of Feature Detection Operators On The Performance Of Iris Biometric Recognition System
Resumo:
Iris Recognition is a highly efficient biometric identification system with great possibilities for future in the security systems area.Its robustness and unobtrusiveness, as opposed tomost of the currently deployed systems, make it a good candidate to replace most of thesecurity systems around. By making use of the distinctiveness of iris patterns, iris recognition systems obtain a unique mapping for each person. Identification of this person is possible by applying appropriate matching algorithm.In this paper, Daugman’s Rubber Sheet model is employed for irisnormalization and unwrapping, descriptive statistical analysis of different feature detection operators is performed, features extracted is encoded using Haar wavelets and for classification hammingdistance as a matching algorithm is used. The system was tested on the UBIRIS database. The edge detection algorithm, Canny, is found to be the best one to extract most of the iris texture. The success rate of feature detection using canny is 81%, False Accept Rate is 9% and False Reject Rate is 10%.
Resumo:
Speech processing and consequent recognition are important areas of Digital Signal Processing since speech allows people to communicate more natu-rally and efficiently. In this work, a speech recognition system is developed for re-cognizing digits in Malayalam. For recognizing speech, features are to be ex-tracted from speech and hence feature extraction method plays an important role in speech recognition. Here, front end processing for extracting the features is per-formed using two wavelet based methods namely Discrete Wavelet Transforms (DWT) and Wavelet Packet Decomposition (WPD). Naive Bayes classifier is used for classification purpose. After classification using Naive Bayes classifier, DWT produced a recognition accuracy of 83.5% and WPD produced an accuracy of 80.7%. This paper is intended to devise a new feature extraction method which produces improvements in the recognition accuracy. So, a new method called Dis-crete Wavelet Packet Decomposition (DWPD) is introduced which utilizes the hy-brid features of both DWT and WPD. The performance of this new approach is evaluated and it produced an improved recognition accuracy of 86.2% along with Naive Bayes classifier.
Resumo:
Biometrics has become important in security applications. In comparison with many other biometric features, iris recognition has very high recognition accuracy because it depends on iris which is located in a place that still stable throughout human life and the probability to find two identical iris's is close to zero. The identification system consists of several stages including segmentation stage which is the most serious and critical one. The current segmentation methods still have limitation in localizing the iris due to circular shape consideration of the pupil. In this research, Daugman method is done to investigate the segmentation techniques. Eyelid detection is another step that has been included in this study as a part of segmentation stage to localize the iris accurately and remove unwanted area that might be included. The obtained iris region is encoded using haar wavelets to construct the iris code, which contains the most discriminating feature in the iris pattern. Hamming distance is used for comparison of iris templates in the recognition stage. The dataset which is used for the study is UBIRIS database. A comparative study of different edge detector operator is performed. It is observed that canny operator is best suited to extract most of the edges to generate the iris code for comparison. Recognition rate of 89% and rejection rate of 95% is achieved
Resumo:
Speech is the most natural means of communication among human beings and speech processing and recognition are intensive areas of research for the last five decades. Since speech recognition is a pattern recognition problem, classification is an important part of any speech recognition system. In this work, a speech recognition system is developed for recognizing speaker independent spoken digits in Malayalam. Voice signals are sampled directly from the microphone. The proposed method is implemented for 1000 speakers uttering 10 digits each. Since the speech signals are affected by background noise, the signals are tuned by removing the noise from it using wavelet denoising method based on Soft Thresholding. Here, the features from the signals are extracted using Discrete Wavelet Transforms (DWT) because they are well suitable for processing non-stationary signals like speech. This is due to their multi- resolutional, multi-scale analysis characteristics. Speech recognition is a multiclass classification problem. So, the feature vector set obtained are classified using three classifiers namely, Artificial Neural Networks (ANN), Support Vector Machines (SVM) and Naive Bayes classifiers which are capable of handling multiclasses. During classification stage, the input feature vector data is trained using information relating to known patterns and then they are tested using the test data set. The performances of all these classifiers are evaluated based on recognition accuracy. All the three methods produced good recognition accuracy. DWT and ANN produced a recognition accuracy of 89%, SVM and DWT combination produced an accuracy of 86.6% and Naive Bayes and DWT combination produced an accuracy of 83.5%. ANN is found to be better among the three methods.
Resumo:
On-line handwriting recognition has been a frontier area of research for the last few decades under the purview of pattern recognition. Word processing turns to be a vexing experience even if it is with the assistance of an alphanumeric keyboard in Indian languages. A natural solution for this problem is offered through online character recognition. There is abundant literature on the handwriting recognition of western, Chinese and Japanese scripts, but there are very few related to the recognition of Indic script such as Malayalam. This paper presents an efficient Online Handwritten character Recognition System for Malayalam Characters (OHR-M) using K-NN algorithm. It would help in recognizing Malayalam text entered using pen-like devices. A novel feature extraction method, a combination of time domain features and dynamic representation of writing direction along with its curvature is used for recognizing Malayalam characters. This writer independent system gives an excellent accuracy of 98.125% with recognition time of 15-30 milliseconds
Resumo:
This paper presents a novel approach to recognize Grantha, an ancient script in South India and converting it to Malayalam, a prevalent language in South India using online character recognition mechanism. The motivation behind this work owes its credit to (i) developing a mechanism to recognize Grantha script in this modern world and (ii) affirming the strong connection among Grantha and Malayalam. A framework for the recognition of Grantha script using online character recognition is designed and implemented. The features extracted from the Grantha script comprises mainly of time-domain features based on writing direction and curvature. The recognized characters are mapped to corresponding Malayalam characters. The framework was tested on a bed of medium length manuscripts containing 9-12 sample lines and printed pages of a book titled Soundarya Lahari writtenin Grantha by Sri Adi Shankara to recognize the words and sentences. The manuscript recognition rates with the system are for Grantha as 92.11%, Old Malayalam 90.82% and for new Malayalam script 89.56%. The recognition rates of pages of the printed book are for Grantha as 96.16%, Old Malayalam script 95.22% and new Malayalam script as 92.32% respectively. These results show the efficiency of the developed system
Resumo:
In this paper we address the problem of face detection and recognition of grey scale frontal view images. We propose a face recognition system based on probabilistic neural networks (PNN) architecture. The system is implemented using voronoi/ delaunay tessellations and template matching. Images are segmented successfully into homogeneous regions by virtue of voronoi diagram properties. Face verification is achieved using matching scores computed by correlating edge gradients of reference images. The advantage of classification using PNN models is its short training time. The correlation based template matching guarantees good classification results